AMC 2016 THE ASIAN MATHEMATICAL CONFERENCE

Program \& Abstracts

25 - 20 ЛULY 2016

B Bali Nusa Dua Convention Center Bali Indonesia

The Asian Mathematical Conference 2016

Program

Abstracts

July 25 - 29, 2016
BNDCC Nusa Dua, Bali, Indonesia

Hosted by :	IndoMS (Indonesian Mathematical Society)
	SEAMS (Southeast Asian Mathematical Society)
Organized by :	ITB (Institut Teknologi Bandung)
	Unpad (Universitas Padjadjaran)
	UGM (Universitas Gadjah Mada)
	UI (Universitas Indonesia)
	UNUD (Universitas Udayana)
Supported by :	Ministry of Research, Technology and Higher Education, Indonesia
	IMU - International Mathematical Union
	KMS - Korean Mathematical Society
	MSJ - Mathematical Society of Japan
	KIAS - Korea Institute for Advanced Study
	CIMPA - Centre International de Mathématiques Pures et Appliquées
	Committee for Women in Mathematics
	Ministry of Tourism Indonesia
	PAI (Persatuan Aktuaris Indonesia)

Published by the Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung

The Asian Mathematical Conference 2016: Program \& Abstracts

ISBN 978-602-74668-0-7

Editors:
Intan Muchtadi Alamsyah
Ikha Magdalena
Utriweni Mukhaiyar
Kristiana Wijaya
Gustina Elfiyanti
Aditya Purwa Santika
Dian Kastika Sofyan
Debi Oktia Haryeni
Yudi Mahatma
Bety Hayat Susanti
Susilawati
Edy Tri Baskoro

Published by:
Fakultas Matematika dan Ilmu Pengetahuan Alam
Institut Teknologi Bandung (ITB)

Gedung LabTek VIII Lantai 1
Jalan Ganesa 10 Bandung
Indonesia 40132
Phone: (022) 2515032, Fax: (022) 2502360
www.fmipa.itb.ac.id
email: admin@fmipa.itb.ac.id

Contents

A. Words of Welcome 2
B. Introduction of Plenary Speakers 5
C. Introduction of Special Lecture Speakers 15
D. Schedule. 19
E. Program
Plenary Lectures 25
Special Lectures 27
Schedule of Sections S01-S10 28
S01. Logic and Foundations / Mathematics Educations / History of Mathematics 28
S02. Algebra / Lie Theory and Generalizations, Number Theory 38
S03. Algebraic and Complex Geometry, Geometry 47
S04. Topology, Analysis and its Applications 50
S05. Dynamical Systems and Ordinary Differential Equations 56
S06. Partial Differential Equations 65
S07. Probability and Statistics 69
S08. Combinatorics and Graph Theory 85
S09. Mathematical Aspects of Computer Science, Numerical Analysis and Scientific Computing /Mathematics in Science and Technology 97
S10. Control Theory and Optimization 113
F. Special Activities 118
G. Abstract 121
H. Index of Authors 533
I. Other Information
Committees 555
Social Activities 560
Practical Information 561
Restaurants 564
Co-operating organizations, institutions, sponsor and donators 569
Exhibitions 570
Map of BNDCC

Words of Welcome

Edy Tri BASKORO
Chair of Asian Mathematical
Conference (AMC) 2016

Budi Nurani RUCHJANA
President of Indonesian
Mathematical Society

This wonderful opportunity has finally come to Indonesia. The spirit of Mathematics is in the air. We are very proud to be able to hold this big event in the place where everyone would love to visit, Bali. Please accept our warm greetings to all of you! It is our great honor and pleasure to welcome all the participants of the Asian Mathematical Conference 2016 from July 25 to July 29 to Bali, Indonesia.
As one of the most prestigious gatherings of mathematicians in Asia, the Asian Mathematical Conference (AMC) has been conducted since 1990. This AMC2016 is the seventh one and hosted by the Indonesian Mathematical Society (IndoMS) and South East Asian Mathematical Society (SEAMS). We are very happy to have this great opportunity to hold such important event. This conference surely will give a very significant impact on promoting and enhancing mathematics in Indonesia as well as in the Asia region.
The program of this conference consists of plenary talks, special lectures, invited and contributed talks as well as posters and exhibitions. We are very grateful that more than 600 mathematicians from 33 countries attend this conference. In this conference, we also have a forum on the establishment of the Mathematical Union of Asia as well as a forum on Asian Women Mathematicians.

We would like to express our sincere gratitude to all the speakers, members of the steering, scientific, program and organizing committees of the AMC 2016 and Indonesian Mathematical Society, SEAMS council members, and distinguished guests from all mathematical societies in Asia. Special thanks go to the co-organizers: Institut Teknologi Bandung (ITB), Universitas Padjadjaran (Unpad), Universitas Gadjah Mada (UGM), Universitas Indonesia (UI) and Universitas Udayana (Unud). We also thank the Korean Mathematical Society (KMS), Mathematical Society of Japan (MSJ), Korea Institute for Advanced Studies (KIAS), International Mathematical Union (IMU), Commission of Women in Mathematics IMU, Centre International de Mathematiques Pures et Appliquees (CIMPA), the Ministry of Research Technology and Higher Education, the Ministry of Tourism, Badan Keamanan Laut (BAKAMLA), Persatuan Aktuaria Indonesia (PAI), PT Komatsu Indonesia for their invaluable supports.
Once again, welcome all of you, we hope all of you enjoy staying in the paradise island of Bali, Indonesia.

Words of Welcome

LING San
President, Southeast Asian Mathematical Society

On behalf of the Southeast Asian Mathematical Society (SEAMS), I welcome you warmly to the Asian Mathematical Conference 2016 (AMC 2016).

The AMC was inaugurated in 1990 in Hong Kong. Held on the average of every 45 years, the AMC has been held subsequently in Thailand (Nakhon Ratchasima), the Philippines (Manila), Singapore, Malaysia (Kuala Lumpur), and South Korea (Busan). AMC 2016 is the seventh conference in this series. We thank our colleagues in the Indonesian mathematical community for hosting and organizing this important event at this beautiful location of Bali.

Asia is a vast continent with countries and regions at very different stages of development in mathematics. Some are mathematically very advanced, and have produced many a renowned mathematician; some face major challenges even to produce enough university graduates in mathematics. However, what is important is that progress is constantly being made throughout the continent in both research and education in mathematics.

With speakers and participants hailing from all over the world, the AMC is a good platform to showcase mathematical research in Asia, to celebrate the achievements of mathematicians in this continent, to facilitate networking for mathematicians from Asia and beyond, and to advance the cause of mathematics together.

I am glad that you have chosen to participate in AMC 2016. I wish you a fruitful and enjoyable time here in Bali, Indonesia.

The Asian Mathematical Conference 2016

Program

S08. Combinatorics and Graph Theory

July 26 (Tue.)
Room: Mengwi 8
Chair: Neil M. Mame

15.00-15.30	Parity of latin squares Ian Wanless Monash University, Australia	
July 27 (Wed.)		

July 27 (Wed.)
Room: Mengwi 8
Chair: Jose Maria P. Balmaceda
15.00-15.30 Resolvability of vertices in graphs

Hilda Assiyatun
Institut Teknologi Bandung
[S08-IT-03, p.376]

July 28 (Thu.)
Room: Mengwi 8

	Chair: Shariefuddin Pirzada
$08.30-09.00$	Euler characteristics in enumerative combinatorics Masahiko Yoshinaga Hokkaido University, Japan
[S08-IT-04, p.377]	

July 28 (Thu.)
Room: Mengwi 5
Chair: Rinovia Simanjuntak

$08.30-09.00$	Extension of splitting operation from graphs to binary matroids
	M. M. Shikare
	Savitribai Phule Pune University, Pune (India)
[S08-IT-05, p.377]	

		Chair: Roslan Hasni
$16.00-16.30$	TBA	
	Manoj Changat	
	University of Kerala	[S08-IT-06, p.378]

16.00-16.30	Hamilton-connectedness in the square of non-separable graphs Gek Ling Chia ${ }^{1,2}$
${ }^{1}$ Universiti Tunku Abdul Rahman, Malaysia ${ }^{2}$ University of Malaya, Malaysia	[S08-IT-08, p.379]

> coxoxaxixicos Contributed Talks coxoxaxcox

July 26 (Tue.)	Room: Mengwi 8
15.30-17.00	Chair: Neil M. Mame
15.30-15.45	Generator subgraphs of wheel graphs
	Neil M. Mame ${ }^{* 1}$, Severino V. Gervacio ${ }^{2}$
	${ }^{1}$ Batangas State University, Philippines
	${ }^{2}$ De La Salle University, Manila, Philippines [S08-CT-01, p.379]
15.45-16.00	Hypercubes are determined by their distance spectra
	Sakander Hayat*, Jack Koolen, Quaid Iqbal
	University of Science and Technology of China [S08-CT-02, p.380]
16.00-16.15	A solution of the Erdös - Faber - Lovász conjecture
	S. M. Hegde, Suresh Dara
	National Inst. of Technology Karnataka, India [S08-CT-03, p.380]
16.15-16.30	On the computational complexity of Roman domination parameters in graph
	Nader Jafari Rad
	Shahrood University of Technology, Iran [S08-CT-04, p.381]

16.30-16.45	Rainbow 2-connectivity of some classes of Halin graphs approaches
	Bety Hayat Susanti ${ }^{* 1,2}$, A.N.M. Salman ${ }^{1}$, Rinovia Simanjuntak ${ }^{1}$
	${ }^{1}$ Institut Teknologi Bandung
	${ }^{2}$ Sekolah Tinggi Sandi Negara, Indonesia \quad [S08-CT-05, p.382]
16.45-17.00	Dihedral Cayley graph: good drawing and domination number
	Maria Linda C. Cabillan, Ia Kristine P. Miranda, Shielden Grail S. Domilies
	Bryan Ceasar L. Felipe*, Niño Angelo L. Gaviño, Clarenz B. Magsakay*
	Christine Mae R. Penullar, Jomark Francis A. Velasco
	Saint Louis University, Philippines [S08-CT-06, p.382]

09.00-10.00 Chair: Hasmawati
09.00-09.15 The Ramsey number of a linear forest versus a wheel

Surahmat Supangken ${ }^{1 *}$, Edy Tri Baskoro ${ }^{2}$
${ }^{1}$ Unisma, Malang, Indonesia
${ }^{2}$ Institut Teknologi Bandung, Indonesia
[S08-CT-07, p.382]
09.15-09.30 The Ramsey numbers for stars of odd order versus a wheel of order nine

Hasmawati
Hasanuddin University of Makassar
[S08-CT-08, p.383]
09.30-09.45 On size multipartite Ramsey numbers for stars versus paths and cycles
Anie Lusiani*, Edy Tri Baskoro, Suhadi Wido Saputro Institut Teknologi Bandung, Indonesia
[S08-CT-09, p.383]
09.45-10.00

Restricted size Ramsey number for P_{3} versus graph of order at most five

Denny Riama Silaban*, Edy Tri Baskoro, Saladin Uttunggadewa
Institut Teknologi Bandung, Indonesia
[S08-CT-10, p.384]

Room: Mengwi 8

15.30-16.00	Chair: Jose Maria P. Balmaceda
15.30-15.45	The rainbow vertex connection number of the amalgamation of graphs
	Rosmaini*, A.N.M. Salman
	Institut Teknologi Bandung [S08-CT-11, p.384]
15.45-16.00	Subgroups as dominating sets for a Cayley graph of the dicyclic group
	Jose Maria P. Balmaceda ${ }^{* 1}$, Joris N. Buloron ${ }^{2}$, Carmelita M. Loquias ${ }^{3}$
	${ }^{1}$ University of the Philippines Diliman, ${ }^{2}$ Cebu Normal University
	${ }^{3}$ University of San Carlos Cebu \quad [S08-CT-12, p.385]

Room: Mengwi 8
09.00-09.45 Chair: Shariefuddin Pirzada
09.00-09.15 On the sum of the Laplacian eigenvalues of a graph

Shariefuddin Pirzada, Hilal Ahmed Ganai
University of Kashmir, India
[S08-CT-13, p.385]
09.15-09.30 Restrained-isolate domination in graphs

Benjier H. Arriola
Basilan State College
[S08-CT-14, p.386]
09.30-09.45 Domination in compositions in graphs

Sergio R. Canoy, Jr. ${ }^{* 1}$, Carmelito E. Go ${ }^{2}$
${ }^{1}$ MSU-Iligan Institute of Technology, Philippines
${ }^{2}$ Mindanao State University, Philippines
[S08-CT-15, p.386]
Room: Mengwi 5
09.00-10.00 Chair: Rinovia Simanjuntak
09.00-09.15 Log-concavity, unimodality and monotonicity of s-rook numbers
Richell O. Celeste ${ }^{1}$, Roberto B. Corcino ${ }^{2}$, Ken Joffaniel M. Gonzales* ${ }^{* 1}$
${ }^{1}$ University of the Philippines, Diliman
${ }^{2}$ Cebu Normal University
[S08-CT-16, p.387]
09.15-09.30 Graph theory problems arising from angklung performance Brilly Maxel Salindeho*, Edy Tri Baskoro Institut Teknologi Bandung, Indonesia
[S08-CT-17, p.388]
09.30-09.45 The rainbow 3-connection number of the cartesian product of a path and certain graphs
M.A. Shulhany*, A.N.M. Salman

Institut Teknologi Bandung, Indonesia
[S08-CT-18, p.388]
09.45-10.00 Hypermatrices and hypergraphs

Daniel Allan Juvito
Institut Teknologi Bandung, Indonesia
[S08-CT-19, p.389]
11.30-12.30 Chair: Hua Mao
11.30-11.45 Results on the Roman domination vertex critical graphs

Nader Jafari Rad Shahrood University of Technology
[S08-CT-20, p.389]
11.45-12.00 Special factors and forbidden words of random Noble means words at most five
Mark Camilo C. Mamaril, Eden Delight P. Miro Ateneo de Manila University, Philippines
[S08-CT-21, p.390]

12.00-12.15	Some properties of matroids obtained from concept lattice approaches Hua Mao
Hebei University, China	
12.15-12.30	A-differential of graphs under some binary operations Cris L. Armada*, Sergio R. Canoy, Jr. Mindanao State University, Philippines
[S08-CT-22, 290]	

July 28 (Thu.)	Room: Mengwi 8
16.30-17.30	Chair: Roslan Hasni
16.30-16.45	$(1,2)^{*}$-domination in graphs
	Sergio R. Canoy, Jr. ${ }^{* 1}$, Shaleema A. Ariola ${ }^{2}$
	${ }^{1}$ MSU-Iligan Institute of Technology, Philippines
	${ }^{2}$ Basilan State College, Philippines [S08-CT-24, p.392]
16.45-17.00	On locating-dominating sets of product graphs
	Suhadi Wido Saputro
	Institut Teknologi Bandung, Indonesia [S08-CT-25, p.392]
17.00-17.15	On the locating chromatic number of cubic Halin graphs
	Ira Apni Purwasih ${ }^{*}$, Edy Tri Baskoro, Hilda Assiyatun, Djoko Suprijanto Institut Teknologi bandung [S08-CT-26, p.393]
17.15-17.30	Some domination parameters in generalized Jahangir graph
	$J_{n, m}$
	Roslan Hasni ${ }^{* 1}$, Safa Mtarneh ${ }^{1}$, ${ }^{\text {, Doost Ali Mojdeh }}{ }^{2}$
	${ }^{1}$ Universiti Malaysia Terengganu, Malaysia
	${ }^{2}$ Tafresh University, Tafresh, Iran [S08-CT-27, p.393]

July 28 (Thu.)	Room: Mengwi 6
16.30-17.30	Chair: Zu Yao Teoh
16.30-16.45	Are Ramsey algebras essentially semigroups
	Zu Yao Teoh*, Wen Chean Teh
	Universiti Sains Malaysia [S08-CT-28, p.394]
16.45-17.00	Subdivision of graphs in $\mathcal{R}\left(m K_{2}, P_{4}\right)$
	Kristiana Wijaya*, Edy Tri Baskoro, Hilda Assiyatun, Djoko Suprijanto
	Institut Teknologi Bandung, Indonesia [S08-CT-29, p.394]
17.00-17.15	On ($3 P_{2}, 2 C_{3}$) and ($2 P_{3}, 2 C_{3}$)-classes graphs Ramsey minimal I W. Sudarsana*, S. Musdalifah, Halimah, D. Winarsih
	Tadulako University, Indonesia [S08-CT-30, p.395]
17.15-17.30	Some infinite families of Ramsey (P_{3}, P_{n})-minimal graphs for small n
	Desi Rahmadani ${ }^{* 1}$, Edy Tri Baskoro ${ }^{1}$, Martin Bača ${ }^{2}$, Hilda Assiyatun ${ }^{1}$ Andrea Semaničová-Feňoyčíková ${ }^{2}$
	${ }^{1}$ ITB, ${ }^{2}$ Technical University, Slovak Republic [S08-CT-31, p.395]

July 28 (Thu.)	Room: Pecatu Hall 1 and 2
16.30-17.30	Chair: L. Susilowati
16.30-16.45	On locating-chromatic number for graphs with two homogenous components
	Des Welyyanti* ${ }^{*}$ Edy Tri Baskoro, Rinovia Simanjuntak, Saladin Uttunggadewa
	Institut Teknologi Bandung [S08-CT-32, p.396]
16.45-17.00	Locating-chromatic number of the edge-amalgamation of trees Dian Kastika Syofyan*, Edy Tri Baskoro, Hilda Assiyatun
	Institut Teknologi Bandung, Indonesia [S08-CT-33, p.397]
17.00-17.15	On commutative characterization of graph operations with respect to local metric dimension
	L. Susilowati* ${ }^{* 1}$, M.I. Utoyo ${ }^{1}$, Slamin ${ }^{2}$
	${ }^{1}$ Universitas Airlangga, Indonesia
	${ }^{2}$ Universitas Jember, Indonesia \quad [S08-CT-34, p.397]
17.15-17.30	On the metric dimension of lollipop graph, Mongolian tent graph, and generalized Jahangir graph
	Ardina Rizqy Rachmasari*, Tri Atmojo Kusmayadi
	Sebelas Maret University, Indonesia [S08-CT-35, p.398]

Arnold A. Eniego* ${ }^{* 1}$, I.J.L Garces ${ }^{2}$
${ }^{1}$ National University, Manila
${ }^{2}$ Ateneo de Manila University
[S08-CT-36, p.398]
08.45-09.00 $\quad C_{4}$-supermagic labeling of the grid graph

Rachel Wulan Nirmalasari Wijaya*, Thomas Kalinowski The University of Newcastle, Australia
[S08-CT-37, p.399]
09.00-09.15 On the (super) edge-magic deficiency of graphs and cycles
A. A. G. Ngurah ${ }^{* 1}$, R. Simanjuntak ${ }^{2}$
${ }^{1}$ Universitas Merdeka Malang, Indonesia
${ }^{2}$ Institut Teknologi Bandung, Indonesia
[S08-CT-38, p.399]
09.15-09.30 A generalized shackle of any graph H admits a super H-antimagic total labeling
Dafik ${ }^{*}$, Moh. Hasan, Y. N. Azizah, I. H. Agustin University of Jember, Indonesia
[S08-CT-39, p.400]
09.30-09.45 Proof of a conjecture on super edge-magic deficiency of graphs S. M. Hegde, Suresh Dara

National Institute of Technology Karnataka, India
[S08-CT-40, p.400]
09.45-10.00 On graph labeling and deficiency of antimagic types

Tao-Ming Wang
Tunghai University, Taichung, Taiwan
[S08-CT-41, p.401]

July 29 (Fri.)	Room: Mengwi 6
08.30-10.00	Chair: Muhammad Imran
08.30-08.45	On metric graphic sets Jose B. Rosario*, Ian June L. Garces Ateneo de Manila University [S08-CT-42, p.402]
08.45-09.00	On the total resolving number of wheel-like graphs Hikmatiarahmah Kekaleniate*, Edy Tri Baskoro Institut Teknologi Bandung, Indonesia [S08-CT-43, p.402]
09.00-09.15	On the partition dimension of two-component graphs Debi Oktia Haryeni ${ }^{* 1}$, Edy Tri Baskoro ${ }^{1}$, Suhadi Wido Saputro ${ }^{1}$ Martin Bača ${ }^{2}$, Andrea Seminačová-Feňovčíková ${ }^{2}$ ${ }^{1}$ Institut Teknologi Bandung ${ }^{2}$ Technical University in Košice, Slovakia [S08-CT-44, p.403]
09.15-09.30	On the partition dimension of antiprism graph, Mongolian tent graph, and stacked book graph Tia Apriliani*, Tri Atmojo Kusmayadi Sebelas Maret University, Indonesia [S08-CT-45, p.403]
09.30-09.45	On the metric dimension of wheel related graphs Muhammad Imran ${ }^{1,2}$, Syed Ahtsham Ul Haq Bokhary ${ }^{3}$, Zile-e-Shams ${ }^{3}$ ${ }^{1}$ National Univ. of Sci. \& Tech., Pakistan ${ }^{2}$ Univ. of the Free State, South Africa ${ }^{3}$ Bahaudin Zakariya University, Pakistan [S08-CT-46, p.404]
09.45-10.00	On the chain blockers of a poset Sarfraz Ahmad COMSATS Institute of Information Technology, Lahore [S08-CT-47, p.405]
July 29 (Fri.)	Room: Mengwi 8
13.30-15.00	Chair: Meilin I. Tilukay
13.30-13.45	Graceful labeling of dihedral Cayley graphs Maria Linda C. Cabillan*, Victoriano I. Ferrer Jr, Noelyn Anne A. Daria, Jet Lee L. Tulas, Albert S. Turalba* Saint Louis University, Philippines [S08-CT-48, p.405]
13.45-14.00	On the total irregularity strength of several types of trees Meilin I. Tilukay*1, A. N. M. Salman ${ }^{2}$ ${ }^{1}$ Universitas Pattimura, Indonesia ${ }^{2}$ Institut Teknologi Bandung, Indonesia [S08-CT-49, p.406]
14.00-14.15	Total vertex irregularity strength of trees with maximum degree five Susilawati*, Edy Tri Baskoro, Rinovia Simanjuntak Institut Teknologi Bandung, Indonesia [S08-CT-50, p.406]
14.15-14.30	The minimal size of rainbow 2-connected graphs D. Resty ${ }^{* 1}$, A.N.M. Salman ${ }^{2}$ Institut Teknologi Bandung, Indonesia [S08-CT-51, p.407]

14.30-14.45	On the total disjoint irregularity strength of wheels and related graphs and cycles
	Meilin I. Tilukay*1 , A. N. M. Salman ${ }^{2}$, F. Y. Rumlawang ${ }^{1}$
	${ }^{1}$ Universitas Pattimura, Indonesia
	${ }^{2}$ Institut Teknologi Bandung, Indonesia \quad [S08-CT-52, p.407]
14.45-15.00	Constructions of encryption key by using a super H-antimagic total graph
	A. C. Prihandoko ${ }^{* 1}$, Dafik ${ }^{2}$, Slamin 1, A. I. Kristiana ${ }^{2}$
	University of Jember, Indonesia [S08-CT-53, p.408]

13.30-15.00 Chair: Dafik
13.30-13.45 The r-dynamic chromatic number of several classes of graphs Dafik ${ }^{* 1}$, I.H. Agustin ${ }^{2}$, D.E.W. Meganingtyas ${ }^{2}$
K.D. Purnomo ${ }^{2}$, M.D. Tarmidzi ${ }^{2}$, N.I. Wulandari ${ }^{2}$ University of Jember, Indonesia
[S08-CT-54, p.409]
13.45-14.00 Game chromatic number and game coloring number of Hanoi graph
Emrah Akyar*, Ummahan Akcan, Handan Akyar Anadolu University, Turkey
[S08-CT-55, p.409]
14.00-14.15 Scrambling index of a class of two-colored two cycles whose lengths differ by 2
Mulyono ${ }^{1}$, Saib Suwilo*2 ${ }^{* 2}$, Hari Sumardi ${ }^{2}$
${ }^{1}$ State University of Medan, Indonesia
${ }^{2}$ University of Sumatera Utara, Indonesia
[S08-CT-56, p.410]
14.15-14.30 Perfect Matching with Restriction in Uncertain Network
I. Rosyida ${ }^{* 1,2}$, Jin Peng ${ }^{3}$, Lin Chen ${ }^{3}$, Widodo ${ }^{2}$,

Ch. Rini Indrati ${ }^{2}$, Kiki A. Sugeng ${ }^{4}$
${ }^{1}$ Gadjah Mada University, Indonesia, ${ }^{2}$ Semarang State University, Indonesia
${ }^{3}$ Huanggang Normal University, China
${ }^{4}$ University of Indonesia
[S08-CT-57, p.410]
14.30-14.45 $\mathbf{L}(\mathbf{2 , 1})$-coloring and its related problems on join of certain graphs and cycles
Srinivasa Rao Kola, Balakrishna Gudla
National Inst. of Technology Karnataka, India
[S08-CT-58, p.411]
14.45-15.00 Rainbow connection and strong rainbow connection for $C_{n}+\overline{K_{r}}$ Srava Chrisdes Antoro*, Fendy Septyanto, Kiki Ariyanti Sugeng Universitas Indonesia
[S08-CT-59, p.412]

July 27 (Wed.)
Room: Pecatu Hall 3 and 5

08.30-10.00	
08.30-10.00	The locating-chromatic number for certain amalgamation of stars
	Asmiati
	Lampung University, Indonesia [S08-P-01, p.412]
08.30-10.00	On the existence of cyclic simple BIBDs
	Hsin-Min Sun
	National University of Tainan, Taiwan [S08-P-02, p.413]
08.30-10.00	The connected size Ramsey number for matchings versus small stars or cycles
	Budi Rahadjeng*, Edy Tri Baskoro, Hilda Assiyatun Institut Teknologi Bandung, Indonesia [S08-P-03, p.413]
08.30-10.00	The Harary index of the nanotube $\mathrm{TUC}_{4} \mathrm{C}_{8}[\mathrm{p}, \mathrm{q}]$
	Sarfraz Ahmad, Fareeha Ambar*
	COMSATS Inst. of Information Tech., Lahore [S08-P-04, p.414]
08.30-10.00	On the partition dimension of barbell graph, double cones graph, and $K_{1}+\left(P_{1} \odot K_{n}\right)$
	Tri Atmojo Kusmayadi, Sri Kuntari, Dwi Wahyu Hidayat
	Sebelas Maret University, Indonesia [S08-P-05, p.415]
08.30-10.00	The partition dimension of a subdivision of homogeneous firecrackers
	Amrullah ${ }^{1}$, Edy Tri Baskoro ${ }^{2}$, Saladin Uttunggadewa ${ }^{2}$, Rinovia Simanjuntak ${ }^{2}$ ${ }^{1}$ Universitar Mataram, Indonesia
	${ }^{2}$ Institut Teknologi Bandung, Indonesia \quad [S08-P-06, p.415]

15.00-16.00	Shifted analogues of the tableau switching
	Seung-Il Choi ${ }^{1}$, Sun-Young Nam ${ }^{* 2}$, Young-Tak Oh ${ }^{3}$
	${ }^{1}$ Seoul National University, ${ }^{2}$ Korea Institute for Advanced Study
	${ }^{3}$ Sogang University \quad [S08-P-07, p.416]
15.00-16.00	On metric dimension of edge-corona product of graphs
	Rinurwati ${ }^{* 1,2}$, Herry Suprajitno ${ }^{1}$, Slamin ${ }^{3}$
	${ }^{1}$ Airlangga University, Surabaya, Indonesia, ${ }^{2}$ ITS Surabaya, Indonesia
	${ }^{3}$ Jember University, Indonesia \quad [S08-P-08, p.416]

15.00-16.00	On the sigma chromatic number of the join of a finite number of paths and cycles
	Maria Czarina T. Lagura*, Agnes D. Garciano, Reginaldo M. Marcelo
	Ateneo de Manila University, Philippines [S08-P-09, p.417]
15.00-16.00	Spectrum of minimum degrees on t-critically-edge-connected graphs
	I Ketut Budayasa, Dwi Juniati
	Universitas Negeri Surabaya [S08-P-10, p.418]
15.00-16.00	The rainbow connection number of certain generalized Jahangir graphs
	S. Nabila*, A. N. M. Salman
	Institut Teknologi Bandung [S08-P-11, p.418]
15.00-16.00	The rainbow vertex-connection number of star cycle graphs and star mobius ladder graphs
	W.B. Ariestha*, A.N.M. Salman
	Institut Teknologi Bandung [S08-P-12, p.419]
15.00-16.00	The rainbow vertex-connection number of some shield graphs
	R. Palupi* A.N.M. Salman
	Institut Teknologi Bandung [S08-P-13, p.419]

Room: Pecatu Hall 3 and 5
08.30-10.00

08.30-10.00	Properties of antiadjacency eigenvalues of regular and line graphs
	Kiki Ariyanti Sugeng
	Universitas Indonesia

08.30-10.00	Eigenvalues of adjacency and Laplacian matrices of graph
	$\operatorname{Spl}(G)-E(G)$ for some regular graph G
	Wisnu Aribowo*, Kiki Ariyanti Sugeng
	Universitas Indonesia

08.30-10.00	Closed geodetic numbers of graphs resulting from some graph operations
	Imelda S. Aniversario*, Ferdinand P. Jamil
	Mindanao State Univ.-Iligan Inst. of Technology [S08-P-16, p.421]
08.30-10.00	Eigenvalues of adjacency, antiadjacency, and Laplacian matrices of bracelet $-K_{n}$ graph
	Ermita Rizki Albirri*, Kiki Ariyanti Sugeng
	Universitas Indonesia [S08-P-17, p.421]
08.30-10.00	On the metric dimension of web graph, generalized flower graph and $C_{n} *_{2} K_{m}$ graph
	Dwi Ria Kartika*, Tri Atmojo Kusmayadi
	Sebelas Maret University, Indonesia [S08-P-18, p.422]

08.30-10.00	The eccentric digraph of a graph
	Eka Ferawati*, Tri Atmojo Kusmayadi
	Sebelas Maret University, Indonesia [S08-P-19, p.423]
08.30-10.00	Signed product cordial labeling of flower graph $f_{n \times 4}$ with graph operations is duplicating all the edges
	Siti Julaeha*, Hadiati
	State Islamic University Bandung, Indonesia [S08-P-20, p.423]
08.30-10.00	Gray codes inducing complete bipartite graphs
	I Nengah Suparta
	Universitas Pendidikan Ganesha, Bali, Indonesia [S08-P-21, p.424]
July 28 (Thu.)	Room: Pecatu Hall 3 and 5
16.00-17.30	
16.00-17.30	A note on skew-checkered weighing matrices and association schemes
	Wai-Keong Kok*, Li-Yin Tan
	Tunku Abdul Rahman University College, Malaysia [S08-P-22, p.424]
16.00-17.30	On the rc and src of graphs containting joins with $\overline{K_{n}}$
	Fendy Septyanto*, Kiki Ariyanti Sugeng
	Universitas Indonesia [S08-P-23, p.425]
16.00-17.30	The characteristic polynomials of the adjacency and antiadjacency matrices of amalgamation of two complete graphs Diah Prastiwi*, Kiki Ariyanti Sugeng
	Universitas Indonesia [S08-P-24, p.425]
16.00-17.30	The H-super(anti)magic decompositions of generalized toroidal prism and antiprism graphs
	Hendy*, Ahmad Dzulfikar
	Universitas Pesantren Tinggi Darul 'Ulum, Indonesia [S08-P-25, p.426]
16.00-17.30	On some properties of a (p, q)-analogues type I and type II of the unified stirling numbers
	Omar I. Cauntongan
	Mindanao State University [S08-P-26, p.426]
16.00-17.30	Totally irregular total labeling of some caterpillar graphs
	Diari Indriati ${ }^{* 1,2}$, Widodo ${ }^{1}$, Indah E. Wijayanti ${ }^{1}$, Kiki A. Sugeng ${ }^{3}$
	${ }^{1}$ University of Gadjah Mada, Indonesia
	${ }^{2}$ University of Sebelas Maret, Indonesia
	${ }^{3}$ University of Indonesia, Indonesia \quad [S08-P-27, p.427]
16.00-17.30	On the distance two-dominating number of graphs resulting from graph operations
	Wicha Dwi Vikade ${ }^{1}$, K. D. Purnomo ${ }^{1}$, Slamin*2 ${ }^{* 2}$
	Universitas Jember, Indonesia [S08-P-28, p.428]

I. H. Agustin*, Dafik, M. S. Hasan, R. N. Darmawan, R. Hidayat University of Jember, Indonesia
[S08-P-29, p.428]

08.30-10.00 Construction of super edge antimagicnes of disjoint union of any graph by using a graph coloring technique
A. I. Kristiana*, M. Mahmudah, Dafik, K. D. Purnomo University of Jember, Indonesia
[S08-P-30, p.429]
08.30-10.00 $\begin{aligned} & \text { Super complete-antimagicness of amalgamation of complete } \\ & \text { graph }\end{aligned}$ graph
I. H. Agustin*, Dafik, M. D. Milasari

University of Jember, Indonesia
[S08-P-31, p.429]
08.30-10.00 Super total antimagic d-face labeling from corona results of friendship graph with path graph
Vicardy Kempa, Darmaji
Sepuluh Nopember Institute of Technology
[S08-P-32, p.430]
08.30-10.00 Bi-resolving graph of cycle-related graphs

Hazrul Iswadi
Universitas Surabaya, Indonesia
[S08-P-33, p.430]
08.30-10.00 Local metric dimension of circulant graph

Ruzika Rimadhany*, Darmaji
Institut Teknologi Sepuluh Nopember, Indonesia
[S08-P-34, p.431]
08.30-10.00 Fuzzy autocatalytic set (FACS) and first isomorphism theorem

Rossiana Edhelyn*, Tahir Ahmad Universiti Teknologi Malaysia
[S08-P-35, p.431]
08.30-10.00 The partition dimension of comb product graphs

Novi Mardiana* ${ }^{* 1}$, Suhadi Wido Saputro ${ }^{2}$, Faisal ${ }^{3}$
${ }^{1}$ Kopertis Wilayah IV Bandung, Indonesia
${ }^{2}$ Institut Teknologi Bandung, Indonesia
${ }^{3}$ Bina Nusantara University, Indonesia
[S08-P-36, p.432]
the same time. The total irregularity strength of a graph G is the minimum value k such that G has a totally irregular total k-labeling, denoted by $t s(G)$. This notion was introduced by Marzuki, Salman, and Miller. Observing the edge-weight set $W(E)$ and the vertex-weight set $W(V)$ of G which induced by $t s(G)$, it may be found that the intersection set $W(E) \cap W(V)$ is a nonempty set. Considering this property, Tilukay and Salman defined a new parameter called a totally disjoint irregular total labeling of a graph G as a total labeling $\lambda: V \cup E \rightarrow\{1,2, \cdots, k\}$ which satisfies: (i) for any two vertices $x \neq y \in V, w(x) \neq w(y)$; (ii) for any two edges $x_{1} y_{1} \neq x_{2} y_{2} \in E, w\left(x_{1} y_{1}\right) \neq w\left(x_{2} y_{2}\right)$; (iii) $W(V) \cap W(E)=\emptyset$; where $w(x) \in W(V)$ is the sum of the label x and the labels of all edges incident to x and $w\left(x_{1} y_{1}\right) \in W(E)$ is the sum of the labels of x_{i}, y_{i} and $x_{1} y_{1}$. The minimum value k such that G has a totally disjoint irregular total labeling is called the total disjoint irregularity strength of G, denoted by $d s(G)$. Tilukay and Salman have determined the exact values $d s$ of paths, cycles, stars, and complete graphs. This paper deals with the total disjoint irregularity strength of wheels and related graphs. We determine the exact values of the total disjoint irregularity strength of wheels, fans, friendships, gears, triangular books, and flowers.

2010 Mathematics Subject Classification: 05C78.
Keywords: total disjoint irregularity strength, total edge irregular labeling, total irregularity strength, total vertex irregular labeling.

CT-53. Constructions of encryption key by using a super H-antimagic total graph

A. C. Prihandoko*1 , Dafik 2, Slamin 1, A. I. Kristiana ${ }^{2}$

${ }^{1}$ Information System Dept. University of Jember, Indonesia
${ }^{2}$ Mathematics Edu. Dept. University of Jember, Indonesia
antoniuscp@gmail.com, \{d.dafik, slamin\}@unej.ac.id, arikakristiana@gmail.com
The strength of cryptosystem relays on the management of encryption key. The key should be managed such that it is hard for any intruder to analyze the key. Thus, the main issue is how to make the relation between plaintext, ciphertext and the key is hidden. This paper will study the use of super (a, d) - H antimagic total graph in developing an encryption key to achieve the security. Let H be a simple, connected and undirected graph. A graph $G=(V, E)$ is said to be a super (a, d) - H-antimagic total graph if there exist a one-to-one map $f: V(G) \cup E(G) \rightarrow$ $\{1,2, \ldots,|V(G)|+|E(G)|\}$ such that for all subgraphs isomorphic to H, the total H-weights $w(H)=\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)$ form an arithmetic sequence $\{a, a+d, a+2 d, \ldots, a+(s-1) d\}$, where a and d are positive integers and s is the number of all subgraphs isomorphic to H, and $f: V(G) \rightarrow\{1,2, \ldots,|V(G)|\}$. The resulting super $(a, d)-H$ antimagic total graph can potentially generates a complex key, thus by using such graph we can get a secure cryptosystem.
2010 Mathematics Subject Classification: 05C78.
Keywords: super H-antimagic total graph, cryptosystem, encryption.

SEAMS South East Asian Mathematical Society

This is to certify that

A. C. Prihandoko

has presented a paper with entitled
"Constructions of encryption key by using a super H-antimagic total graph"
in

AMC 2016

THE ASIAN MATHEMATICAL CONFERENCE

on
25-29 JULY 2016
at
Bali Nusa Dua Convention Center
Bali - Indonesia

Organized by

ars
Prof. Dr. Edy Tri Baskoro
Chair of AMC 2016

Prof. 7 Dr. Budi Nurani Ruchjana
President of IndoMS

The construction of encryption key by using a super H-antimagic total graph

A. C. Prihandoko ${ }^{2}$, Dafik ${ }^{1,3}$, I. H. Agustin ${ }^{4}$, D. Susanto ${ }^{4}$, Slamin ${ }^{1,2}$
${ }^{1}$ CGANT University of Jember Indonesia
${ }^{2}$ Information System Depart. University of Jember Indonesia
${ }^{3}$ Mathematics Edu. Depart. University of Jember Indonesia
${ }^{4}$ Mathematics Depart. University of Jember Indonesia
antoniuscp.ilkom@unej.ac.id; d.dafik@unej.ac.id

Abstract

The strength of cryptosystem relays on the management of encryption key. The key should be managed such that it is hard for any intruder to analyze the key. Thus, the main issue is how to make the relation between plaintext, ciphertext and the key is hidden. This paper will study the use of super $(a, d)-H$ antimagic total graph in developing an encryption key to achieve the security. Let H be a simple, connected and undirected graph. A graph $G=(V, E)$ is said to be a super (a, d) - H-antimagic total graph if there exist a one-to-one map $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots,|V(G)|+|E(G)|\}$ such that for all subgraphs isomorphic to H, the total H-weights $w(H)=\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)$ form an arithmetic sequence $\{a, a+d, a+2 d, \ldots, a+(s-1) d\}$, where a and d are positive integers and s is the number of all subgraphs isomorphic to H, and $f: V(G) \rightarrow$ $\{1,2, \ldots,|V(G)|\}$. The resulting super $(a, d)-H$ antimagic total graph can potentially generates a complex key, thus by using such graph we can get a secure cryptosystem.

2010 Mathematics Subject Classification: 05C78

Keywords: Super H-antimagic total graph, Cryptosystem, Encryption
Section: SS-08

1 Introduction

Encryption is a popular approach for secure information or digital content distributed over the Internet. Some encryption implementation scenarios for such security purposes can be cited in [6, 7, 8, The strength of these security systems relays on the management of the encryption key. The key must be secret and inaccessible to unauthorized users, as finding the key would allow someone to decrypt and access the content or information
without restriction. Indeed, keeping the key from being accessible to the users is a major challenge for any cryptosystem.

We focus on a block cipher. This type of cipher supports a polyalphabetic cryptosystem. In this cipher, plaintext is divided into blocks with the same length. Each block is encrypted using a sequence of keys. By this algorithm, the same alphabets in different positions could be encrypted by different keys. In an ordinary block cipher, all blocks are encrypted using the same sequence of keys. Suppose we work on 26 English alphabets and the plaintext is divided into blocks of length b, so a cryptanalyst can compute the block key in 26^{b} ways. To make the key harder to analyze, we employ a a super H-antimagic total graph labeling to construct the block keys. By this labeling, the different blocks could be encrypted using the different sequences of keys. It will be harder for an intruder to break the system as he has to analyze the keys for every single block.

A shackle of graph H, denoted by $G=\operatorname{shack}(H, v, n)$, is a graph G constructed by non-trivial graphs $H_{1}, H_{2}, \ldots, H_{n}$ such that, for every $1 \leq s, t \leq n, H_{s}$ and H_{t} have no a common vertex with $|s-t| \geq 2$ and for every $1 \leq i \leq n-1, H_{i}$ and H_{i+1} share exactly one common vertex v, called connecting vertex, and those $k-1$ connecting vertices are all distinct. By a generalized shackle of graph, we mean the graph $G=\operatorname{shack}(H, v, n)$ by replacing the connecting vertex by any subgraph $K \subset H$ and we denote such a graph as $G=\operatorname{gshack}(H, K \subset H, n)$.

A graph G is said to be an (a, d) - H-antimagic total graph if there exist a bijective function $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots,|V(G)|+|E(G)|\}$ such that for all subgraphs of G isomorphic to H, the total H-weights $w(H)=\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)$ form an arithmetic sequence $\{a, a+d, a+2 d, \ldots, a+(n-1) d\}$, where a and d are positive integers and n is the number of all subgraphs of G isomorphic to H. If such a function exist then f is called an (a, d) - H-antimagic total labeling of G. An ($a, d)$ - H-antimagic total labeling f is called super if $f: V(G) \rightarrow\{1,2, \ldots,|V(G)|\}$.

There many articles have been published in many journals, some of them can be cited in [2, 3, 5]. Inayah et al. in [5] proved that, for H is a non-trivial connected graph and $k \geq 2$ is an integer, $\operatorname{shack}(H, v, k)$ which contains exactly k subgraphs isomorphic to H is H-super antimagic. They only covered a connected version of shackle of graph when a vertex as a connector, and their paper did not cover all feasible d. Our paper attempt to determine the existence of a super $(a, d)-H$ antimagic total labeling of connected or disconnected generalized shackle of graphs H, K when $H=\digamma_{2, m}$ and $K=e$, denoted by $G=\operatorname{gshack}\left(\digamma_{2, m}, e, n\right)$, as well as to study its application to the construction of cryptosystem encryption key.

2 A Useful Lemma and Corollary

A generalized shackle of prism graph $G=\operatorname{gshack}\left(H, P_{2}, n\right)$ is a connected graph with vertex set $V_{1}\left(\operatorname{gshack}\left(H, P_{2}, n\right)\right)=\left\{x_{i, j} ; 1 \leq i \leq 2,1 \leq j \leq n+1\right\}, V_{2}\left(\operatorname{gshack}\left(H, P_{2}, n\right)\right)=$ $\left\{y_{i, j} ; 1 \leq i \leq p_{H}-4,1 \leq j \leq n\right\}$ and edge set $E_{1}\left(\operatorname{gshack}\left(H, P_{2}, n\right)\right)=\left\{x_{1, j} x_{2, j} ; 1 \leq j \leq\right.$ $n+1\}, E_{2}\left(\operatorname{gshack}\left(H, P_{2}, n\right)\right)=\left\{e_{l, j} ; 1 \leq l \leq p_{H}-2,1 \leq j \leq n\right\}$. Thus $p_{G}=|V(G)|=$ $\left|V_{1}\right|+\left|V_{2}\right|=n\left(p_{H}-2\right)+2$ and $q_{G}=|E(G)|=\left|E_{1}\right|+\left|E_{2}\right|=n\left(q_{H}-1\right)+1$.

A disjoint union of generalized shackle of prism graph $G=\operatorname{sgshack}\left(H, P_{2}, n\right)$ is a disconnected graph with vertex set $V_{1}\left(\operatorname{gshack}\left(H, P_{2}, n\right)\right)=\left\{x_{i, j}^{k} ; 1 \leq i \leq 2,1 \leq j \leq\right.$ $n+1,1 \leq k \leq s\}, V_{2}\left(\operatorname{gshack}\left(H, P_{2}, n\right)\right)=\left\{y_{i, j}^{k} ; 1 \leq i \leq p_{H}-4,1 \leq j \leq n, 1 \leq\right.$ $k \leq s\}$ and edge set $E_{1}\left(\operatorname{gshack}\left(H, P_{2}, n\right)\right)=\left\{x_{1, j}^{k} x_{2, j}^{k} ; 1 \leq j \leq n+1,1 \leq k \leq s\right\}$, $E_{2}\left(\operatorname{gshack}\left(H, P_{2}, n\right)\right)=\left\{e_{l, j}^{k} ; 1 \leq l \leq p_{H}-2,1 \leq j \leq n, 1 \leq k \leq s\right\}$. Thus $p_{G}=$ $|V(G)|=\left|V_{1}\right|+\left|V_{2}\right|=n s\left(p_{H}-2\right)+2 s$ and $q_{G}=|E(G)|=\left|E_{1}\right|+\left|E_{2}\right|=n s\left(q_{H}-1\right)+s$.

The upper bound of feasible d for $G=\operatorname{gshack}\left(H, P_{2}, n\right)$ and $G=\operatorname{sgshack}\left(H, P_{2}, n\right)$ to be a super $(a, d)-H$-antimagic total labeling follows the following lemma [2].

Lemma 1. [2] Let G be a simple graph of order p and size q. If G is super $(a, d)-H$ antimagic total labeling then $d \leq \frac{\left(p_{G}-p_{H}\right) p_{H}+\left(q_{G}-q_{H}\right) q_{H}}{n-1}$, for $p_{G}=|V(G)|, q_{G}=|E(G)|$, $p_{H}=|V(H)|, q_{H}=|E(H)|$, and $n=\left|H_{j}\right|$.

Thus, for $p_{G}=n\left(p_{H}-2\right)+2$ and $q_{G}=n\left(q_{H}-1\right)+1$, we have the following corollary.

Corrollary 1. For $m \geq 2$, if the graph $G=\operatorname{gshack}\left(H, P_{2}, n\right)$ admits super $(a, d)-H$ antimagic total labeling then $d \leq p_{H}^{2}+q_{H}^{2}-2 p_{H}-q_{H}$.

Thus for $p_{G}=n s\left(p_{H}-2\right)+2 s$ and $q_{G}=n s\left(q_{H}-1\right)+s$, we have the following corollary.

Corrollary 2. For $n \geq 2$ and odd $s \geq 3$, if the disconnected graph $G=\operatorname{sgshack}\left(H, P_{2}, n\right)$ admits super (a, d) - H-antimagic total labeling then $d \leq p_{H}^{2}+q_{H}^{2}-2 p_{H}-q_{H}+\frac{(s-1)\left(2 p_{H}+q_{H}\right)}{(n s-1)}$.

We recall a partition $\mathcal{P}_{m, d}^{n}(i, j)$ introduced in [4]. We will use the partition for a linear combination in developing a bijection of vertex and edge label of the main theorem.

Lemma 2. [4] Let n and m be positive integers. The sum of $\mathcal{P}_{m, d}^{n}(i, j)=\{(i-1) n+$ $j, \quad 1 \leq i \leq m\}$ and $\mathcal{P}_{m, d}^{n}(i, j)=\{(j-1) m+i ; \quad 1 \leq i \leq m\}$ form an aritmatic sequence of difference $d \in\left\{m, m^{2}\right\}$, respectively.

Lemma 3. Let n and m be positive integers. For $1 \leq j \leq n$, the sum of $\mathcal{P}_{m, d}^{n}(i, j)=$ $\{m n+i-m j ; 1 \leq i \leq m ; 1 \leq j \leq n\}$ and $\mathcal{P}_{m, d}^{n}(i, j)=\{1+n i-j ; 1 \leq i \leq m ; 1 \leq j \leq n\}$ form an arithmetic sequence of differences of $d \in\left\{-m^{2},-m\right\}$.

Lemma 4. Let n, m and s be positive integers $1 \leq j \leq n ; 1 \leq k \leq s$, the sum of $\mathcal{P}_{m, d_{7}}^{n, s}(i, j, k)=\{(k-1) m+i+(j-1) m s ; 1 \leq i \leq m ; 1 \leq j \leq n ; 3 \leq k \leq s\}$ and the sum of $\mathcal{P}_{m, d_{8}}^{n, s}(i, j, k)=\{(j-1) s+i+k+(i-1) n s ; 1 \leq i \leq m\}$ form an arithmetic sequence of differences $d_{5}=m^{2}$ and $d_{6}=m$.

3 The Results

To show the existence of super (a, d) - H antimagic total labeling of $G=\operatorname{gshack}\left(\digamma_{2, m}, e, n\right)$ and $G=\operatorname{sgshack}\left(\digamma_{2, m}, e, n\right)$, we will use an integer set partition technique introduced by [1, 3]. This technique used in determining the feasible difference d. Let n, m, d and k be positive integers. We consider the partition $\mathcal{P}_{m, d}^{n}(i, j)$ of the set $\{1,2, \ldots, m n\}$ into n columns, $n \geq 2$, m-rows such that the difference between the sum of the numbers in the $(j+1)$ th m-rows and the sum of the numbers in the j th m-rows is always equal to the constant d, where $j=1,2, \ldots, n-1$. Thus these sums form an arithmetic sequence with the difference d. By the symbol $\mathcal{P}_{m, d}^{n}(i, j)$ we denote the j th m-rows in the partition with the difference d, where $j=1,2, \ldots, n$. Let $\sum \mathcal{P}_{m, d}^{n}(i, j)$ be the sum of the numbers in $\mathcal{P}_{m, d}^{n}(i, j)$, thus $d=\sum \mathcal{P}_{m, d}^{n}(j+1)-\sum \mathcal{P}_{m, d}^{n}(j)$.

3.1 Super (a, d)-H antimagic total labeling (SHATL)

The following three lemmas are useful for studying the existence of super $(a, d)-H$ antimagic total labeling of $G=\operatorname{gshack}\left(\digamma_{2, m}, e, n\right)$. These lemmas are related to the developing of the partition $\mathcal{P}_{m, d}^{n}(i, j)$.
Lemma 5. Let n and m be positive integers. For $1 \leq j \leq n$, the sum of

$$
\mathcal{P}_{m, d}^{n}(i, j)= \begin{cases}n i-j & ; \mathrm{i} \equiv 1(\bmod 3), 1 \leq i \leq m, 1 \leq j \leq n-1 \\ n i & ; \mathrm{i} \equiv 1(\bmod 3), 1 \leq \mathrm{i} \leq \mathrm{m}, \mathrm{j}=\mathrm{n} \\ n i-n+j+1 & ; \mathrm{i} \equiv 2(\bmod 3), 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}-1 \\ 1+n i-n & ; \mathrm{i} \equiv 2(\bmod 3), 1 \leq \mathrm{i} \leq \mathrm{m}, \mathrm{j}=\mathrm{n} \\ n i-n+j & ; \mathrm{i} \equiv 3(\bmod 3), 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}\end{cases}
$$

and

$$
\mathcal{P}_{m, d}^{n}(i, j)= \begin{cases}n i-2 j+2 & ; \mathrm{i} \equiv 1(\bmod 3), 1 \leq i \leq m, 1 \leq j \leq n-1 \\ n i-1 & ; \mathrm{i} \equiv 1(\bmod 3), 1 \leq \mathrm{i} \leq \mathrm{m}, \mathrm{j}=\mathrm{n} \\ n i-n+2 j-1 & ; \mathrm{i} \equiv 2(\bmod 3), 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}-1 \\ n i-n+2 & ; \mathrm{i} \equiv 2(\bmod 3), 1 \leq \mathrm{i} \leq \mathrm{m}, \mathrm{j}=\mathrm{n} \\ n i-j+1 & ; \mathrm{i} \equiv 3(\bmod 3), 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}\end{cases}
$$

form an arithmetic sequence of differences of $d \in\left\{\frac{m}{3}, \frac{-m}{3}\right\}$.
Now we are ready to present the main theorem related to the existence of super $(a, d)-H$ antimagicness of the connected graph $G=\operatorname{gamal}(H, K \subseteq H, n)$, in the following theorem.

Teorema 1. For $m, n \geq 3$, the graph $G=\operatorname{gshack}\left(H, P_{2}, n\right)$ admits a super $(a, d)-H$ antimagic total labeling with feasible d is $d=\frac{m_{1}}{3}-\frac{m_{2}}{3}+m_{3}^{2}-m_{4}^{2}+m_{5}-m_{6}+\frac{r_{1}}{3}-\frac{r_{2}}{3}+$ $r_{3}^{2}-r_{4}^{2}+r_{5}-r_{6}+10$.

3.2 Building encryption keys

Now, we will show how to construct encryption keys by using super $(a, d)-H$ antimagic total labeling of the graph $G=\operatorname{gshack}\left(\digamma_{2, m}, e, n\right)$. Suppose we work on 26 English alphabets. The keys construction is undertaken through the following algorithm.

Algorithm 1. SHATL Algorithm for constructing encryption keys

1. Assign f as label of the graph elements
2. If f is bijection, do 3 , otherwise back to 1
3. Take a certain d for super (a,d)-HATL
4. Take $\mathrm{z}=$ sum of the number of vertices and 26
5. Draw the layered diagram by ignoring all labels greater than z
6. Place all edge labels in sequence from left to right and start from the top to the bottom layer.
7. Use the sequence of labels as the encryption keys

For clarity, we need to have an illustration of $f\left(x_{i, j}\right), 1 \leq i \leq 2,1 \leq j \leq 5$, $f\left(y_{i, j}\right), 1 \leq i \leq 5,1 \leq j \leq 4, f\left(x_{1, j} x_{2, j}\right), 1 \leq j \leq 5, f\left(e_{l, j}\right), 1 \leq i \leq 11,1 \leq j \leq 5$, through the following figure.

Figure 1: Super $(a, 12)-H$ ATL of the graph $G=\operatorname{gshack}\left(\digamma_{2,4}, e, 4\right)$.
Figure 1 indicates that the vertex labels start from 1 to 30 and the edge labels start from 31 to 79 . We then draw a layered diagram rooted at label 1 of super $(a, 74)-H$ antimagic total labeling of the graph $G=\operatorname{gshack}\left(\digamma_{2,4}, e, 4\right)$, by ignoring the labels which start from $57,58 \ldots, 79$. The obtained layered diagram is shown in Figure 2. Thus, the
sequence of encryption keys (through the order of alphabets A to Z in the Figure) is 31 , $39,48,52,54,40,50,49,51,53,55,47,32,36,56,43,46,33,37,42,45,34,38,41,44$, 35 , or (in its equivalence modulo 26) $5,13,22,0,2,14,24,23,25,1,3,21,6,10,4,17$, $20,7,11,16,19,8,12,15,18,9$.

Figure 2: The layered diagram rooted at label 1

3.3 Encryption Algorithm

We apply the sequence of keys produced by the algorithm 1 to a block cipher in the mode of Cipher Block Chaining (CBC). In this system, a plaintext P is divided into blocks as well as the keys sequence K. Encryption process is undertaken using algorithm 2 .

Algorithm 2. Encryption using CBC Mode

1. Let the plaintext $P=\left(p_{i}\right), 1 \leq i \leq h$
2. Let the keys sequence $K=\left(k_{i}\right), 1 \leq i \leq m$
(a) If $m<h, K$ is repeated fully or partially, such that $|K|=|P|$.
(b) If $m>h, K=K-\left\{k_{h+1}, \ldots, k_{m}\right\}$
3. Divide P into blocks of the length b.
4. Divide K into blocks of the length b.
5. For $i=1$ to $\left\lceil\frac{h}{b}\right\rceil$, compute the ciphertext blocks using equation 1 .

$$
\begin{equation*}
C_{i}=C_{i-1}+P_{i}+K_{i} \bmod 26 \tag{1}
\end{equation*}
$$

where P_{i}, K_{i}, and C_{i} are the i-th block of plaintext, key sequence, and ciphertext, respectively. For $i=1, C_{i-1}$ is a null vector.

We express our cryptosystem using triple: $\left(G=\operatorname{gshack}\left(H, P_{2}, n\right), C B C, b\right)$. It means that the encryption keys are generated using SHATL on a shackle graph G and encryption process is undertaken block by block of the length b each in the mode Cipher Block Chaining. Table 1 shows how the keys sequence obtained from the layered diagram in Figure 2 is applied to encrypt the plaintext "asianmathematicalconference" and yields the ciphertext "FFEADFDUGUUYTYALDCXDJPFQIUY". The decryption process can be done in the reverse direction.

Table 1: Example of Encryption Process.

plaintext	a	s	i	a	n	m	a	t	h	e	m	a	t	i	c
P_{i}	0	18	8	0	13	12	0	19	7	4	12	0	19	8	2
C_{i-1}	0	0	0	0	0	5	5	4	0	15	5	3	20	6	20
P_{i}^{\prime}	0	18	8	0	13	17	5	23	7	19	17	3	13	14	22
K_{i}	5	13	22	0	2	14	24	23	25	1	3	21	6	10	4
C_{i}	5	5	4	0	15	5	3	20	6	20	20	24	19	24	0
ciphertext	F	F	E	A	P	F	D	U	G	U	U	Y	T	Y	A
plaintext	a	l	c	o	n	f	e	r	e	n	c	e			
P_{i}	0	11	2	14	13	5	4	17	4	13	2	4			
C_{i-1}	20	24	19	24	0	11	3	2	23	3	9	15			
P_{i}^{\prime}	20	9	21	12	13	16	7	19	1	16	11	19			
K_{i}	17	20	7	11	16	19	8	12	15	18	9	5			
C_{i}	11	3	2	23	3	9	15	5	16	8	20	24			
ciphertext	L	D	C	X	D	J	P	F	Q	I	U	Y			

3.4 Security Analysis

We combine SHATL and CBC to develop a cryptosystem scheme. SHATL is utilized to construct a keys sequence, while CBC is to encrypt the plaintext. This combination is aimed to make the relation between plaintext, ciphertext and the key is hidden (confusion principle) and to spread the effect of a bit plaintext or key to as many as possible the ciphertext (diffusion principle). These two principles are utilized to strengthen block cipher. To analyze security of the scheme, we simulate four main possible attack models.

Ciphertext Only Attack

In this attack, an intruder knows the ciphertext only. The intruder applies as many as possible keys to the known ciphertext to determine which key that yields a meaningful plaintext. As the plaintext is divided into blocks of the length b, there are 26^{b} possible keys for a block. Since there exists $\left\lceil\frac{h}{b}\right\rceil$ blocks and different blocks are encrypted by different keys, there are 26^{h}, where h is the length of the plaintext. Furthermore, by CBC mode, the keys for the 2nd to $\left\lceil\frac{h}{b}\right\rceil$-th blocks are confused by previous cipher blocks.

Known Plaintext Attack

This attack assumes that an intruder has a part of the ciphertext and its correspondent plaintext. In ordinary block cipher, once the intruder get a pair of ciphertext and plaintext in a block, he can decrypt the whole message. In our scheme, having only a part of the ciphertext and its correspondent plaintext is not adequate to decrypt the whole message, since the different blocks are encrypted using different sequence of keys.

Chosen Plaintext/Ciphertext Attack

In these attack models, an intruder is assumed having a temporary access to the encryption/decryption machine. He attempts to encrypt a number of plaintext/ciphertext and use the results to derive the encryption/decryption keys. In our scheme, a new keys sequence can be generated using SHATL everytime an encryption process is started. Therefore, a temporary access to the encryption/decryption machine is not sufficient to break the system, since at the subsequent times, the machine uses new SHATL-generated keys.

Based on the previous analysis, our block cipher scheme achieve a good security. This scheme is harder to break by all possible attacks, compared to the ordinary block cipher.

Concluding Remarks

We have shown the existence of super antimagicness of generalized shackle of graph $G=\operatorname{gshack}\left(H, P_{2}, n\right)$, and the use of this graph in constructing an encryption key of polyalphabetic cipher. The result shows that the resulting super (a, d) - H antimagic total graph can potentially generates different keys sequence for different blocks in a block cipher and thus, make the cipher harder to analyzed. However, the keys of each block are independent each other. For future research we still propose the following open problems.

Open Problem 1. Can super (a, d)-H antimagic total graph generate keys for a stream
cipher, where a keys sequence of a block is generated from the keys sequences of previous blocks?

Acknowledgement

We gratefully acknowledge the support from DP2M research grant HIKOM-DIKTI and CGANT - University of Jember of year 2016.

References

[1] M. Bača, L. Brankovic, M. Lascsáková, O., Phanalasy, A. Semaničová-Feňovčíková, On d-antimagic labelings of plane graphs, Electr. J. Graph Theory Appli., 1(1), 2839, (2013)
[2] Dafik, A.K. Purnapraja, R Hidayat, Cycle-Super Antimagicness of Connected and Disconnected Tensor Product of Graphs, Procedia Computer Science, 74, (2015), 9399
[3] Dafik, Slamin, D. Tanna, A. Semaničová-Feňovčíková, M. Bača, Constructions of H-antimagic graphs using smaller edge-antimagic graphs, Ars Combinatoria, 100 (2017), In Press
[4] Dafik, M. Hasan, Y.N. Azizah, I. H. Agustin, A Generalized Shackle of Any Graph H Admits a Super H-Antimagic Total Labeling, Mathematics in Computer Science Journal, (2016). Submitted
[5] N. Inayah, R. Simanjuntak, A. N. M. Salman, Super $(a, d)-H$-antimagic total labelings for shackles of a connected graph H, The Australasian Journal of Combinatorics, 57 (2013), 127138.
[6] A.C. Prihandoko, H. Ghodosi, and B. Litow, Obfuscation and WBC: Endeavour for Securing Encryption in the DRM Context, Proceedings of the International Conference on Computer Science and Information Technology, CSIT (2013), 150155, ISBN 978-979-3812-20-5 2.
[7] A.C. Prihandoko, H. Ghodosi, and B. Litow, Secure and Private Content Distribution in the DRM Environment, Proceedings of the Information System International Conference, ISICO (2013), 659-664, ISBN 978-979-18985-7-7. Available online at Open Access Journal of Information Systems.
[8] A.C. Prihandoko, H. Ghodosi, and B. Litow, Deterring Traitor Using Double Encryption Scheme, Proceedings of the IEEE International Conference on Communication, Network and Satellite, COMNETSAT (2013), 100-104, ISBN 978-1-4673-6054-8. Available online at IEEE Xplore Digital Library.

The Asian Mathematical Conference 2016

Other Information

Hosted by

- IndoMS (Indonesian Mathematical Society)
- SEAMS (South East Asian Mathematical Society)

Organized by

- ITB (Institut Teknologi Bandung)
- Unpad (Universitas Padjadjaran)
- UGM (Universitas Gadjah Mada)
- UI (Universitas Indonesia)
- UNUD (Universitas Udayana)

Supported by

- Ministry of Research, Technology and Higher Education Indonesia
- CIMPA - Centre International de Mathématiques

Pures et Appliquées

- KMS - Korean Mathematical Society
- MSJ - Mathematical Society of Japan
- KIAS - Korea Institute for Advanced Study
- IMU - International Mathematical Union
- Committee for Women in Mathematics

Co-Chairs

- Edy Tri Baskoro, Institut Teknologi Bandung
- Budi Nurani Ruchjana, Universitas Padjadjaran
- Sri Wahyuni, Universitas Gadjah Mada
- Kiki A. Sugeng, Universitas Indonesia

General Secretary

- Intan Muchtadi, Institut Teknologi Bandung

Steering Committee

- Edy Tri Baskoro, Institut Teknologi Bandung, Indonesia President of SEAMS (Chair)
- Hyungju Park, International Mathematical Union (IMU)
- C. Herbert Clemens, International Mathematical Union
- Budi Nurani, President of Indonesian Mathematical Society
- Liqun Zhang, General Secretary of Chinese Mathematical Society
- Motoko Kotani, President of Mathematical Society of Japan
- Yong-Hoon Lee, President of Korean Mathematical Society
- BN. Waphare, Representative of Indian Mathematical Society
- Ling San, President of Singapore Mathematical Society
- Le Tuan Hoa, VIASM, Vietnam

Scientific Committee

- Budi Nurani Ruchjana, Unpad, Indonesia (Chair)
- Intan Muchtadi, Institut Teknologi Bandung, Indonesia (Co-chair)
- Srinivasan Kesavan, International Mathematical Union
- Polly W. Sy., International Mathematical Union
- Dohan Kim, Seoul National University, Korea
- Fidel Nemenzo, University of the Philippines Diliman
- Wanida Hemakul, Chulalongkorn University, Thailand
- Zhu Chengbo, National University of Singapore
- Rosihan M. Ali, Universiti Sains Malaysia
- Maslina Darus, Universiti Kebangsaan Malaysia
- Leo H. Wiryanto, Institut Teknologi Bandung, Indonesia
- Zulkardi, Universitas Sriwijaya, Indonesia
- SEAMS Council Members

Program Committee

- Intan Muchtadi (Institut Teknologi Bandung) - Chair
- Ikha Magdalena (Institut Teknologi Bandung)
- Indah Emilia Wijayanti (Universitas Gadjah Mada)
- Hizir Syofyan (Universitas Syiah Kuala)
- Rinovia Simanjuntak (Institut Teknologi Bandung)
- Mashadi (Universitas Riau)
- Irwan Endrayanto (Universitas Gadjah Mada)
- Slamin (Universitas Jember)
- Yaya S. Kusumah (Universitas Pendidikan Indonesia)
- Agus Suryanto (Universitas Brawijaya)
- Utriweni Mukhaiyar (Institut Teknologi Bandung)
- Marjono (Universitas Brawijaya)
- Hasmawati (Universitas Hasanuddin)
- Marwan (Universitas Syiah Kuala)
- Ema Carnia (Universitas Padjadjaran)
- Mardiyana (Universitas Sebelas Maret)
- Eridani (Universitas Airlangga)
- Dadan Kusnandar (Universitas Tanjung Pura)
- Ratu Ilma Indra Putri (Universitas Sriwijaya)
- Kristiana Wijaya (Universitas Jember)
- Alhadi Bustamam (Universitas Indonesia)
- Jalina Wijaya (Institut Teknologi Bandung)
- S. Sariyasa (Universitas Pendidikan Ganesha)
- Thomas Pentury (Universitas Pattimura)
- Yudi Soeharyadi (Institut Teknologi Bandung)
- Widowati (Universitas Diponegoro)
- Salmah (Universitas Gadjah Mada)
- Gustina Elfiyanti (Universitas Islam Negeri Jakarta)
- Topan Eko Raharjo (Institut Teknologi Bandung)

Organizing Committee

- Sri Wahyuni (Universitas Gadjah Mada) - Chair
- Ch. Rini Indrati (Universitas Gadjah Mada)
- Kiki A. Sugeng (Universitas Indonesia)
- Edi Cahyono (Universitas Halu Oleo)
- Gunardi (Universitas Gadjah Mada)
- Komang Dharmawan (Universitas Udayana)
- Diah Chaerani (Universitas Padjadjaran)
- Wikaria Gazali (Universitas Bina Nusantara)
- Tjokorda Bagus Oka (Universitas Udayana)
- Ketut Budayasa (Universitas Negeri Surabaya)
- Syafrizal Sy. (Universitas Andalas)
- G. K. Gandhiadi (Universitas Udayana)
- Saladin Uttunggadewa (Institut Teknologi Bandung)
- Erma Suwastika (Institut Teknologi Bandung)
- Basuki Widodo (Institut Teknologi Sepuluh Nopember)
- Herni Utami (Universitas Gadjah Mada)
- Anang Kurnia (Institut Pertanian Bogor)
- Abdurrahman Asari (Universitas Negeri Malang)
- Idha Sihwaningrum (Universitas Jenderal Sudirman)
- Titin Siswantining (Universitas Indonesia)
- Tulus (Universitas Sumatera Utara)
- Anna Chadidjah (Universitas Padjadjaran)
- Hengki Tasman (Unversitas Indonesia)
- Rudi Rosadi (Universitas Padjadjaran)
- Sisilia Sylviani (Universitas Padjadjaran)
- Nora Hariadi (Universitas Indonesia)
- Fahmi Candra Permana (Universitas Padjadjaran)

SEAMS Council Members

- Ling San (SEAMS President 2016-2017

Nanyang Technological University, Singapore)

- Edy Tri Baskoro (SEAMS President 2014-2015 Institut Teknologi Bandung, Indonesia)
- Yongwimon Lenbury (SEAMS Vice-President 2014-2015 Mahidol University, Thailand)
- Le Tuan Hoa (Institute of Mathematics, Vietnam Academy of Science \& Technology, Vietnam)
- Zhu Chengbo (National University of Singapore, Singapore)
- Nguyen Huu Du (Vietnam Institute for Advanced Study in Mathematics Hanoi, Vietnam)
- Budi Nurani (Universitas Padjadjaran, Indonesia)
- Sri Wahyuni (Universitas Gadjah Mada, Indonesia)
- Chan Wai Hong (Honking Institute of Education, Hong Kong)
- Rosihan M. Ali, Dato (Universiti Sains Malaysia, Penang, Malaysia)
- Maslina Darus (Universiti Kebangsaan Malaysia, Selangor, Malaysia)
- Suthep Suantai (Director of CEPMART, Thailand)
- Wanida Hemakul (Chulalongkorn University Bangkok, Thailand)
- Fidel Nemenzo (University of the Philippines, Diliman, Philippines)
- Jose Maria P. Balmaceda (University of the Philippines, Diliman, Philippines)
- K. P. Shum (Editor-In-Chief, Southeast Asian Bulletin of Mathematics, Yunnan University, Kunming, China)
- Chan Roath (Cambodian Mathematical Society, Cambodia)
- Ty Poli Reth (National Institute of Education, Phnom Penh, Cambodia)
- Thein Myint (President, Mathematical Society of Myanmar, Myanmar)
- Saw Win Maung (Joint Secretary, Mathematical Society of Myanmar, Myanmar)
- Nguyen Van Sanh (SEAMS Treasurer 2016-2017 Mahidol University, Thailand)
- Victor Tan (SEAMS Secretary 2016-2017 National University of Singapore, Singapore)

Organized by:
ITB (Institut Teknologi Bandung) Unpad (Universitas Padjadjaran) UGM (Universitas Gadjah Mada)
UI (Universitas Indoneisa)
UNUD (Universitas Udayana)

Supported by:
RISTEKDIKTI (Kementerian Riset Teknologi Dan Pendidikan Tinggi Republik Indonesia)
IMU (International Mathematical Union)
KMS (Korean Mathematical Society)
MSJ (The Mathematical Society of Japan)
KIAS (Korea Institute for Advanced Study)
CIMPA (Centre International de Mathématiques Pures et Appliquées)
KEMENPAR RI (Kementerian Pariwisata Republik Indonesia)
PAI (Persatuan Aktuaris Indonesia)

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS JEMBER UPT PERPUSTAKAAN
Jl. Kalimantan 37 - Kampus Tegal Boto Kotak Pos 198 Jember 68121
Telp. (0331) 333860, 330224 Pes. 308 Fax. (0331) 338261
Website: http://perpustakaan.unej.ac.id http://library.unej.ac.id Email : library@unej.ac.id

SURAT KETERANGAN KARYA DEPOSIT

No. 683/UN25.5.1/TU.3/2018
Jenis Karya : Makalah
Dengan ini Kepala UPT Perpustakaan Universitas Jember menerangkan bahwa :

No	NAMA	FAKULTAS/INSTANSI	KONTRIBUTOR
1	Drs. Antonius Cahya Prihandoko, M.App.Sc., Ph.D.	Fak.IImu Komputer	
2	Prof. Drs. Dafik, M.Sc., Ph.D.	FKIP	Penulis Tambahan
3	Ika Hesti Agustin, S.Si., M.Si	FMIPA	Penulis Tambahan
4	Prof. Drs. Slamin, M.Comp.Sc., Ph.D.	Fak.Ilmu Komputer	Penulis Tambahan

telah membuat karya tulis dalam bentuk makalah sebagai berikut :

Judul
Penerbit dan Distribusi
Kolasi
Yang Disampaikan Dalam Acara
Tempat dan Waktu
: The Construction of Encryption Key by Using a Super H-antimagic Total Graph
: Bandung: Faculty of Mathematics and Natural Sciences - ITB, 2016 : ISBN : 978-602-74668-0-7
: The Asian Mathematical Conference (AMC) 2016
: Bali, Indonesia, 29 Juli 2016 Pkl. 11:07

Karya ilmiah tersebut telah dipublikasikan di repository Universitas Jember dengan alamat : http://repository.unej.ac.id/handle/123456789/85639 dan telah diposting di media sosial dengan alamat:-
Karya Ilmiah tersebut telah didaftar dan didokumentasikan di UPT Perpustakaan Universitas Jember dengan nomor inventaris : KK. 340/3.24/2018

Jember, 30 April 2018
Universitas Jember
Rektor
u,b. Kepala UPT Perpustakaan

Ida Widiastuti, S.Sos.,M.I.Kom
NIP. 197711202001122002
Tembusan :

1. •Fak.Ilmu Komputer

- FKIP
- FMIPA

2. Arsip
