SUPER \((a, d)\)-CYCLES-ANTIMAGIC LABELING OF SUBDIVISION OF A FAN GRAPH

R. M. Prihandini1,4, Ridho Alfarisi1,4, I. H. Agustin1,3 and Dafik1,2

1CGANT University of Jember
Jember, Indonesia

2Department of Mathematics Education
University of Jember
Jember, Indonesia

3Department of Mathematics
University of Jember
Jember, Indonesia

4Elementary School Teacher Education
University of Jember
Jember, Indonesia

Abstract

We consider a simple, connected and undirected graph \(G(V, E)\) with vertex set \(V(G)\) and edge set \(E(G)\). There is a super \((a, d)\)-\(H\)-antimagic total labeling on the graph \(G(V, E)\) if there exists a bijection \(f : V \cup E \rightarrow \{1, 2, ..., |V| + |E|\}\) such that for all subgraphs isomorphic to \(H\), the total \(H\)-weights \(W(H) = \sum_{v \in V(H)} f(v) + \sum_{e \in E(H)} f(e)\) form an arithmetic sequence.

Received: August 8, 2017; Accepted: November 19, 2017
2010 Mathematics Subject Classification: 05C78.
Keywords and phrases: \(H\)-covering, super \((a, d)\)-\(H\)-antimagic total labeling, cycle-antimagic labeling, subdivisions of fan graph.
\[\{a, a + d, a + 2d, \ldots, a + (m - 1)d\} \text{, where } a > 0 \text{ is the smallest value, } d \text{ is the feasible difference, and } m \text{ is the number of all subgraphs isomorphic to } H. \] In this paper, we investigate the existence of super \((a, d)\)-\(H\)-antimagic total labeling for subdivisions of a fan graph \(S(F_m)\), when subgraphs \(H\) are cycles.

1. Introduction

Given that a graph \(G = (V, E)\) is nontrivial, finite, simple, undirected and connected graph of vertex set \(V\) and edge set \(E\). For more details on graph, see [10, 3, 4]. A covering of \(G\) is a family of subgraphs \(H_1, H_2, \ldots, H_n\) such that all vertices \(V(G)\) and edges \(E(G)\) belong to at least one of the subgraphs \(H_i, i = 1, 2, \ldots, n\) taken into account as a cover. In this case, we say that \(G\) admits \((H_1, H_2, \ldots, H_n)\)-covering if every subgraph \(H_i\) is isomorphic to a given graph \(H\) admits a special property to be an \(H\)-labeling.

A graph \(G\) is said to be an \((a, d)\)-\(H\)-antimagic total graph if there exists a bijective function \(f : V(G) \cup E(G) \rightarrow \{1, 2, \ldots, |V(G)| + |E(G)|\}\) such that for all subgraphs isomorphic to \(H\), the total \(H\)-weights

\[
 w(H) = \sum_{v \in V(H)} f(v) + \sum_{e \in E(H)} f(e)
\]

form an arithmetic sequence \(\{a, a + d, a + 2d, \ldots, a + (m - 1)d\}\), where \(a\) and \(d\) are positive integers and \(n\) is the number of all subgraphs isomorphic to \(H\). If such a function exists, then \(f\) is called an \((a, d)\)-\(H\)-antimagic total labeling of \(G\), see [11]. The total \(H\)-weight is the sum of both vertex and edge labels belonging to a subgraph \(H\), under a given labeling \(f\). The \(H\)-weight under a labeling \(f\) is denoted by \(w(H)\). Such a labeling is called super if the smallest possible labels appear on the vertices. If \(G\) admits a super \((a, d)\)-\(H\)-antimagic total labeling, then we say that \(G\) is a super \((a, d)\)-\(H\)-antimagic graph. For \(d = 0\), it is called \(H\)-magic or \(H\)-supermagic.
Some relevant results have been published in many journals, some of them can be found in [1, 2, 8, 9]. Furthermore, Lladó and Moragas [12] proved that wheels, windmills, books and prisms are C_t^k-magic for some t. Inayah et al. in [11] proved that for any H and any integer $k \geq 2$, $\text{shack}(H, v, k)$ which contains exactly k subgraphs isomorphic to H admits H-super antimagic. Dafik et al. in [5, 6] also obtained a cycle-super antimagicness of connected and disconnected tensor product of graphs, and constructed H-antimagic graphs by using smaller edge-antimagic graphs. Furthermore, Dafik et al. in [7] also determined the super H-antimagicness of an edge comb product of graphs with subgraph as a terminal of its amalgamation.

2. The Results

We study the subdivision of graph G. By subdivision of graph, denoted by $S(G)$, we mean a graph obtained from G by replacing each edge uv of G by a new vertex y and the two new edges uy and vy. For details on the subdivision of graph G, see [4]. The vertex y is called a subdivision vertex on uv.

We deal with the super cycle-antimagic total labelings of subdivision of a fan graph, denoted by $S(F_m)$.

Observation 1. Let $S(F_m)$ be a subdivision of a fan graph. The order and size of graph $S(F_m)$ are, respectively, $|V(S(F_m))| = 3m$ and $|E(S(F_m))| = 4m - 2$.

Proof. The graph $S(F_m)$ is a connected graph with vertex set $V(S(F_m)) = \{x\} \cup \{x_i; 1 \leq i \leq m\} \cup \{y_i; 1 \leq i \leq m\} \cup \{z_i; 1 \leq i \leq m - 1\}$ and edge set

$$E(S(F_m)) = \{y_iz_i; 1 \leq i \leq m - 1\} \cup \{xix_i; 1 \leq i \leq m\} \cup \{z_iz_{i+1}; 1 \leq i \leq m - 1\} \cup \{y_iz_i; 1 \leq i \leq m\}.$$

Thus, the order of the graph $S(F_m)$ is $|V(S(F_m))| = 3m$ and the size of the graph $S(F_m)$ $|E(S(F_m))| = 4m - 2$.

\qed
For illustration, we give an example of subdivision of a fan graph $S(F_m)$ depicted in Figure 1.

![Diagram of subdivision of a fan graph](image)

Figure 1. Example of subdivision of a fan graph $S(F_m)$.

Observation 2. Let C^k_t be a cycle of t vertices of subdivision of a fan graph $S(F_m)$, where $t = 6, 8, \ldots, 2m - 2$. The number of cycles of order t which is a cover $H \equiv C^k_t$ of $S(F_m)$ is given by $|H| = m - \frac{t - 4}{2}$.

Proof. Let C^k_t be a cycle of t vertices of subdivision of a fan graph $S(F_m)$, where $t = 6, 8, \ldots, 2m - 2$ for $3 \leq m \leq 4$ and $t = 6, 8, \ldots, 2m - 2$ for $m \geq 5$. The tth cycle of C^k_t can be formed by the following set of vertices

$$C^k_t = \{x, x_k, y_k, z_k, y_{k+1}, z_{k+1}, y_{k+2}, z_{k+2}, \ldots, z_{k-6}, y_{k-6}, y_{k-4}, x, x_{k-4}, x_{k-6}, x\}.$$

It is easy to see that $k = 1, 2, \ldots, m - \left\lfloor \frac{t - 4}{2} \right\rfloor$. Thus $|C^k_t| = m - \frac{t - 4}{2}$. It concludes the proof. □

Furthermore, we can determine the C^k_t-weight of the cycle C^k_t, $k = 1, 2, \ldots, m - \left\lfloor \frac{t - 4}{2} \right\rfloor$ under a total labeling g:
\[w_g(C^k_t) = \sum_{v \in V(C^k_t)} f(v) + \sum_{e \in E(C^k_t)} f(e) \]
\[= \sum_{s=0}^{t} \left[g(y_{k+s}) + g(z_{k+s}) + g(y_{k+s}z_{k+s}) + g(z_{k+s}y_{k+s+1}) \right] \]
\[+ g\left(y_k + \left(\frac{t-4}{2} \right) \right) + g(x_k) + g\left(x_k + \left(\frac{t-4}{2} \right) \right) + g(x) \]
\[+ g\left(y_k + \left(\frac{t-4}{2} \right)x + \left(\frac{t-4}{2} \right) \right) + g(y_kx_k) + g(x_kx) + g\left(x_k + \left(\frac{t-4}{2} \right)x \right). \quad (1) \]

From now on, we show our main results. We have found that the graph \(S(F_m) \) admits super \((a, d)\)-\(C^k_t \) antimagic labeling for differences \(d = \{0, 1, 2, 4\} \).

Theorem 1. Let \(t = 6, 8, \ldots, 2m - 2 \) for \(3 \leq m \leq 4 \) and \(t = 6, 8, \ldots, 2m - 2 \) for \(m \geq 5 \). Let \(k = 1, 2, \ldots, m - \left(\frac{t-4}{2} \right) \). The subdivision of fan \(S(F_m) \) admits a super \((a, d)\)-\(C^k_t \)-antimagic labeling for \(d = 0 \).

Proof. We define the labeling
\[g_1, g_1 : V(S(F_m)) \cup E(S(F_m)) \rightarrow \{1, 2, \ldots, p_{S(F_m)} + q_{S(F_m)}\} \]
in the following way:
\[g_1(y_i) = 2i - 1; \ 1 \leq i \leq m \quad g_1(z_i) = 2i; \ 1 \leq i \leq m - 1 \]
\[g_1(x_i) = 3m + i - 1; \ 1 \leq i \leq m \quad g_1(x) = 2m \]
\[g_1(y_iz_i) = 5m - 2i; \ 1 \leq i \leq m - 1 \quad g_1(y_iz_i) = 5m + 2i - 3; \ 1 \leq i \leq m \]
\[g_1(x_iz_i) = 7m - 2i; \ 1 \leq i \leq m \quad g_1(z_iz_{i+1}) = 5m - 2i - 1; \ 1 \leq i \leq m - 1. \]

Evidently, it is easy to see that \(g_1 \) is a bijective function, as it is a map \(g_1 : V(S(F_m)) \cup E(S(F_m)) \rightarrow \{1, 2, \ldots, 3m, \ldots, 5m - 1, 5m, \ldots, 7m - 2\} \). The total weight of \(V(S(F_m)) \cup E(S(F_m)) = \{y_i; \ 1 \leq i \leq m\} \cup \{y_iz_i; \ 1 \leq i \leq m - 1\} \)
under the labeling \(g_1 \), is given by

\[
g_1(y_i) + g_1(z_i) = g_1(z_i) + g_1(z_i y_{i+1}) = [2i - 1] + \lfloor 5m - 2i \rfloor = 5m - 1. \tag{2}
\]

The total edge-weight of

\[
E(S(F_m)) = \{xx_i; 1 \leq i \leq m\} \cup \{y_i x_i; 1 \leq i \leq m\}
\]

is

\[
g_1(xx_i) + g_1(y_i x_i) = [5m + 2i - 3] + [7m - 2i] = 12m - 3. \tag{3}
\]

From equations (1), (2) and (3), we obtain the total \(C_t^k \)-weight as follows:

\[
w_{g_1}(C_t^k) = \sum_{v \in V(C_t^k)} f(v) + \sum_{e \in E(C_t^k)} f(e)
\]

\[
= \left[(t - 4)(5m - 1) \right] + 2 \times [12m - 3] + \left[3m + k + \frac{t - 4}{2} \right]
\]

\[
+ [3m - k + 1] + 2m
\]

\[
= 5m(t - 4) - t + 4 + 24m - 6 + 3m + k + \frac{t - 4}{2} - 2
\]

\[
+ 3m - k + 1 + 2m
\]

\[
= m(5t + 12) - \frac{t}{2} - 3.
\]

It is easy to see that the total \(C_t^k \)-weights of \(S(F_m) \), under the labeling \(g_1 \), when \(t = 6, 8, \ldots, 2m \) for \(3 \leq m \leq 4 \) and when \(t = 6, 8, \ldots, 2m - 2 \) for \(m \geq 5 \), and for \(k = 1, 2, \ldots, m - \left(\frac{t - 4}{2} \right) \), constitute the following sets:

\[
C_t^k = \left\{ m(5t + 12) - \frac{t}{2} - 3, m(5t + 12) - \frac{t}{2} - 3, \ldots, m(5t + 12) - \frac{t}{2} - 3 \right\}.
\]

It concludes that the subdivision of fan \(S(F_m) \) admits a super \((a, d)\)-\(C_t^k \)-antimagic total labeling with feasible \(d = 0 \). \(\Box \)
Theorem 2. Let \(t = 6, 8, \ldots, 2m - 2 \) for \(3 \leq m \leq 4 \) and \(t = 6, 8, \ldots \), \(2m - 2 \) for \(m \geq 5 \). Let \(k = 1, 2, \ldots, m - \left(\frac{t - 4}{2} \right) \). Then subdivision of fan \(S(F_m) \) admits a super \((a, d)\)-\(C^k_t \)-antimagic labeling for \(d = 1 \).

Proof. We define the labeling

\[g_2, \quad g_2 : V(S(F_m)) \cup E(S(F_m)) \rightarrow \{1, 2, \ldots, p_{S(F_m)} + q_{S(F_m)}\} \]

in the following way:

\[g_2(y_i) = i; \quad 1 \leq i \leq m \quad g_2(x_i) = 2m - i + 1; \quad 1 \leq i \leq m \]

\[g_2(z_i) = 3m - i; \quad 1 \leq i \leq m - 1 \quad g_2(x) = 3m \]

\[g_2(y_iz_i) = 3m + i; \quad 1 \leq i \leq m - 1 \quad g_2(y_ix_i) = 5m + 2i - 3; \quad 1 \leq i \leq m \]

\[g_2(xx_i) = 7m - 2i; \quad 1 \leq i \leq m \quad g_2(z_iz_{i+1}) = 5m - i - 1; \quad 1 \leq i \leq m - 1. \]

Evidently, it is easy to see that \(g_2 \) is a bijection, as it is a map \(g_2 : V(S(F_m)) \cup E(S(F_m)) \rightarrow \{1, 2, \ldots, 3m, \ldots, 5m - 1, 5m, \ldots, 7m - 2\} \). The total weight of

\[V(S(F_m)) \cup E(S(F_m)) = \{y_i; \quad 1 \leq i \leq m\} \cup \{z_i; \quad 1 \leq i \leq m - 1\} \]

under the labeling \(g_2 \), is

\[g_2(y_i) + g_2(y_iz_i) + g_2(z_i) + g_2(z_iz_{i+1}) = i + 3m + i + 3m - i + 5m - i - 1 = 11m - 1. \] \(\text{(4)} \)

The total edge-weight of \(E(S(F_m)) = \{xx_i; \quad 1 \leq i \leq m\} \cup \{y_ix_i; \quad 1 \leq i \leq m\} \) is as follows:

\[g_2(xx_i) + g_2(y_ix_i) = [5m + 2i - 3] + [7m - 2i] = 12m - 3. \] \(\text{(5)} \)

From equations (1), (4) and (5), we obtain the total \(C^k_t \)-weight as follows:
\[w_{g_2}(C^k_t) = \sum_{v \in V(C^k_t)} f(v) + \sum_{e \in E(C^k_t)} f(e) \]

\[= \left[\left(\frac{t-4}{2} \right)(11m-1) \right] + 2 \times [12m - 3] + [2m + 1] \]

\[+ [2m - k + 1] + 3m \]

\[= 11m \left(\frac{t-4}{2} \right) - \frac{t-4}{2} + 24m - 6 + 2m + 1 + 2m - k + 1 + 3m \]

\[= 11m \frac{t}{2} + 9m - \frac{t}{2} - 3 - k. \]

It is easy to see that the total \(C_i \)-weights of \(S(F_m) \), under the labeling \(g_2, t = 6, 8, ..., 2m \) for \(3 \leq m \leq 4 \) and \(t = 6, 8, ..., 2m - 2 \) for \(m \geq 5 \) and \(k = 1, 2, ..., m - \left(\frac{t-4}{2} \right) \), constitute the following sets:

\[C^k_t = \left\{ 11m \frac{t}{2} + 9m - \frac{t}{2} - 3 - k, ..., 11m \frac{t}{2} + 9m - \frac{t}{2} - 3 - 2, \right. \]

\[\left. 11m \frac{t}{2} + 9m - \frac{t}{2} - 3 - 1 \right\}. \]

It concludes that the subdivision of fan \(S(F_m) \) admits a super \((a, d)\)\(-\)antimagic total labeling with feasible \(d = 1 \). \(\square \)

Theorem 3. Let \(t = 6, 8, ..., 2m - 2 \) for \(3 \leq m \leq 4 \) and \(t = 6, 8, ..., 2m - 2 \) for \(m \geq 5 \). Let \(k = 1, 2, ..., m - \left(\frac{t-4}{2} \right) \). Then subdivision of fan \(S(F_m) \) admits a super \((a, d)\)\(-\)antimagic labeling for \(d = 4 \).

Proof. We define the labeling

\[g_3, g_3 : V(S(F_m)) \cup E(S(F_m)) \rightarrow \{1, 2, ..., p_{S(F_m)} + q_{S(F_m)}\} \]

in the following way:
\[g_3(y_i) = 2i - 1; \quad 1 \leq i \leq m \]
\[g_3(z_i) = 2i; \quad 1 \leq i \leq m - 1 \]
\[g_3(x_i) = 2m + i - 1; \quad 1 \leq i \leq m \]
\[g_3(x_i) = 3m \]
\[g_3(y_i) = 7m - 2i; \quad 1 \leq i \leq m - 1 \]
\[g_3(z_i) = 5m - 2i + 1; \quad 1 \leq i \leq m \]
\[g_3(x_i) = 3m + 2i; \quad 1 \leq i \leq m \]
\[g_3(z_i) = 7m - 2i - 1; \quad 1 \leq i \leq m - 1. \]

Evidently, it is easy to see that \(g_3 \) is a bijection as it is a map \(g_3 : V(S(F_m)) \cup E(S(F_m)) \rightarrow \{1, 2, \ldots, 3m, \ldots, 5m - 1, 5m, \ldots, 7m - 2\}. \) The total weight of \(V(S(F_m)) \cup E(S(F_m)) = \{y_i; 1 \leq i \leq m\} \cup \{y_i; 1 \leq i \leq m - 1\} \) under the labeling \(g_3 \), is given by

\[g_3(y_i) + g_3(y_i) = g_3(z_i) + g_3(z_i) = [2i - 1] + [7m - 2i] = 7m - 1. \] (6)

The total edge-weight of \(E(S(F_m)) = \{xx_i; 1 \leq i \leq m\} \cup \{y_i; 1 \leq i \leq m\} \) is as follows:

\[g_3(x_i) + g_3(x_i) = [5m - 2i + 1] + [3m + 2i] = 8m + 1. \] (7)

From equations (1), (6) and (7), we obtain the total \(C^k_t \)-weight as follows:

\[
\begin{align*}
 w_{g_3}(C^k_t) &= \sum_{v \in V(C^k_t)} f(v) + \sum_{e \in E(C^k_t)} f(e) \\
 &= \left[(t - 4)(7m - 1) + 2 \times [8m + 1] + \left[2(m + 2) + 3 \left(k + \frac{t}{2} - 4 \right) \right] \right] \\
 &\quad + [2m + k - 1] + 3m \\
 &= (t - 4)7m - t + 4 + 16m + 2 + 2m + 4 + 3 \left(k + \frac{t}{2} \right) \\
 &\quad - 12 + 2m + k - 1 + 3m \\
 &= m(7t - 5) - 3 + \frac{t}{2} + 4k.
\end{align*}
\]

It is easy to see that the total \(C_t \)-weights of \(S(F_m) \), under the labeling \(g_3 \), \(t = 6, 8, \ldots, 2m \) for \(3 \leq m \leq 4 \) and \(t = 6, 8, \ldots, 2m - 2 \) for \(m \geq 5 \) and \(k = 1, 2, \ldots, m = \left(\frac{t - 4}{2} \right) \), constitute the following sets:
It concludes that the subdivision of fan $S(F_m)$ admits a super (a, d)-C_t^k-antimagic total labeling with feasible $d = 4$. □

Theorem 4. Let $t = 6, 8, \ldots, 2m - 2$ for $3 \leq m \leq 4$ and $t = 6, 8, \ldots$, $2m - 2$ for $m \geq 5$. Let $k = 1, 2, \ldots, m - \left\lceil \frac{t - 4}{2} \right\rceil$. Then subdivision of fan $S(F_m)$ admits a super (a, d)-C_t^k-antimagic labeling for $d = 2$.

Proof. We define the labeling g_3,

$$g_3 : V(S(F_m)) \cup E(S(F_m)) \rightarrow \{1, 2, \ldots, P_{S(F_m)} + q_{S(F_m)}\}$$

in the following way:

$$g_4(y_i) = 2i - 1; 1 \leq i \leq m$$

$$g_4(x_i) = 3m - i + 1; 1 \leq i \leq m$$

$$g_4(z_i) = 2i; 1 \leq i \leq m - 1$$

$$g_4(x) = 2m$$

$$g_4(y_i z_i) = 5m - i - 1; 1 \leq i \leq m - 1$$

$$g_4(y_i x_i) = 5m + 2i - 3; 1 \leq i \leq m$$

$$g_4(xx_i) = 7m - 2i; 1 \leq i \leq m$$

$$g_4(z_i y_{i+1}) = 4m - i; 1 \leq i \leq m - 1.$$

Evidently, it is easy to see that g_4 is a bijection as it is a map $g_3 : V(S(F_m)) \cup E(S(F_m)) \rightarrow \{1, 2, \ldots, 3m, \ldots, 5m - 1, 5m, \ldots, 7m - 2\}$. The total weight of

$$V(S(F_m)) \cup E(S(F_m)) = \{z_i; 1 \leq i \leq m - 1\} \cup \{y_i z_i; 1 \leq i \leq m - 1\}$$

$$\cup \{x_i y_{i+1}; 1 \leq i \leq m - 1\}$$

under the labeling g_3, is as follows:

$$g_4(z_i) + g_4(y_i z_i) + g_4(z_i y_{i+1}) = (5m - i - 1) + 2i + 4m - i = 9m - 1. \ (8)$$

The total edge-weights of $E(S(F_m)) = \{xx_i; 1 \leq i \leq m\} \cup \{y_i x_i; 1 \leq i \leq m\}$ are as follows:

$$g_4(xx_i) + g_4(y_i x_i) = [5m + 2i - 3] + [7m - 2i] = 12m - 3. \ (9)$$
From equations (1), (8) and (9), we obtain the total C_t^k-weight in the following way:

$$w_{g1}(C_t^k) = \sum_{v \in V(C_t^k)} f(v) + \sum_{e \in E(C_t^k)} f(e)$$

$$= \left[\left(\frac{t-4}{2}\right)(9m-1)\right] + 2 \times [12m - 3] + [2m] + [2k - 1 + 2k + t - 5] + [3m - k + 1] + 3m - \frac{t}{2} + 2 - k$$

$$= 9m\left(\frac{t-4}{2}\right) + 32m + 2k - 7.$$

It is easy to see that the total C_t-weights of $S(F_m)$, under the labeling $g_4, t = 6, 8, ..., 2m$ for $3 \leq m \leq 4$ and $t = 6, 8, ..., 2m - 2$ for $m \geq 5$ and $k = 1, 2, ..., m - \left(\frac{t-4}{2}\right)$, constitute the following sets:

$$C_t^k = \{9m\left(\frac{t-4}{2}\right) + 32m + 2 - 7, 9m\left(\frac{t-4}{2}\right) + 32m + 4 - 7, ..., 9m\left(\frac{t-4}{2}\right) + 32m + 2\left(m - \left(\frac{t-4}{2}\right)\right) - 7\}.$$

It concludes that the subdivision of fan $S(F_m)$ admits a super (a, d)-C_t^k-antimagic total labeling with feasible $d = 2$. \hspace{1cm} \square

3. Concluding Remarks

We have shown the existence of super (a, d)-H-antimagicness of subdivision of fan graphs $S(F_m)$, when H is a cycle. We can prove that $d = \{0, 1, 2, 4\}$. As we have not found the result for another difference, we propose the following:

Problem. Find a super (a, d)-H-antimagic labeling of the subdivision of a fan graph for $d \neq \{0, 1, 2, 4\}$.
Acknowledgement

We gratefully acknowledge the support HIKOM DP2M Ristekdikti - Indonesia and CGANT - University of Jember of year 2017.

References

