JOURNAL OF PHYSICS: CONFERENCE SERIES

International Conference of Combinatorics, Graph Theory, and Network Topology
(ICC GANT)

Jember, Indonesia
25-26 November 2017

Volume: 1008-2018
ISSN: 17426588

IOP Publishing
The 1st International Conference of Combinatorics, Graph Theory, and Network Topology

To cite this article: 2018 J. Phys.: Conf. Ser. 1008 011001

View the article online for updates and enhancements.

Related content

- The Committees of The First International Conference on Combinatorics, Graph Theory and Network Topology (ICCGANT)
- Optimization of scheduling system for plant watering using electric cars in agrotech park
 Nelly Oktavia Adiwijaya, Yudha Herambang and Slamin
- Some Pictures of The 2015 International Conference on Mathematics, its Applications, and Mathematics Education
 Sudi Mungkasi
The First International Conference on Combinatorics, Graph Theory and Network Topology (ICCGANT)

Dafik
Editor in Chief of ICCGANTs Publication, University of Jember, Jember, Indonesia
E-mail: d.dafik@unej.ac.id

Preface
It is with my great pleasure and honor to organize the First International Conference on Combinatorics, Graph Theory and Network Topology which is held from 25-26 November 2017 in the University of Jember, East Java, Indonesia and present a conference proceeding index by Scopus. It is the first international conference organized by CGANT Research Group University of Jember in cooperation with Indonesian Combinatorics Society (INACOBMS). The conference is held to welcome participants from many countries, with broad and diverse research interests of mathematics especially combinatorial study. The mission is to become an annual international forum in the future, where, civil society organization and representative, research students, academics and researchers, scholars, scientist, teachers and practitioners from all over the world could meet in and exchange an idea to share and to discuss theoretical and practical knowledge about mathematics and its applications. The aim of the first conference is to present and discuss the latest research that contributes to the sharing of new theoretical, methodological and empirical knowledge and a better understanding in the area mathematics, application of mathematics as well as mathematics education.

The topics are not limited to the above themes but they also include the mathematical application research of interest in general including mathematics education, such as: (1) Applied Mathematics and Modelling, (2) Applied Physics: Mathematical Physics, Biological Physics, Chemistry Physics, (3) Applied Engineering: Mathematical Engineering, Mechanical engineering, Informatics Engineering, Civil Engineering, (4) Statistics and Its Application, (5) Pure Mathematics (Analysis, Algebra and Geometry), (6) Mathematics Education, (7) Literacy of Mathematics, (8) The Use of ICT Based Media In Mathematics Teaching and Learning, (9) Technological, Pedagogical, Content Knowledge for Teaching Mathematics, (10) Students Higher Order Thinking Skill of Mathematics, (11) Contextual Teaching and Realistic Mathematics, (12) Science, Technology, Engineering, and Mathematics Approach, (13) Local Wisdom Based

The participants of this ICCGANT 2017 conference were 200 people consisting research students, academics and researchers, scholars, scientist, teachers and practitioners from many countries. The selected papers to be publish of Journal of Physics: Conference Series are 80 papers. On behalf of the organizing committee, finally we gratefully acknowledge the support from the University of Jember of this conference. We would also like to extend our thanks to all lovely participants who are joining this unforgettable and valuable event.

Prof. Drs. Dafik, M.Sc., Ph.D.
The Committees of The First International Conference on Combinatorics, Graph Theory and Network Topology (ICCGANT)

To cite this article: 2018 J. Phys.: Conf. Ser. 1008 011002

View the article online for updates and enhancements.
The Committees of The First International Conference on Combinatorics, Graph Theory and Network Topology (ICCGANT)

Dafik
Editor in Chief of ICCGANTs Publication, University of Jember, Jember, Indonesia
Professor of Combinatorics and Graph Theory
E-mail: d.dafik@unej.ac.id

Advisory Committee
Moch. Hasan Rector of the University of Jember
Zulfikar Vice Rector of the University of Jember
Slamin President of Indonesian Combinatorial Society

Organizing Committee
Dafik Chairperson
Ika Hesti Agustin Secretary

Advisory Editorial Board
Surahmat University of Islam Malang, Indonesia
Syafirizal Sy University of Andalas, Indonesia

Editorial Board
Arika Indah Kristiana University of Jember, Indonesia
Abduh Riski University of Jember, Indonesia
Ikhsanul Halikin University of Jember, Indonesia
Ridho Alfarisi University of Jember, Indonesia
Rafiantika Megahnia Prihandini University of Jember, Indonesia
Kusbudiono University of Jember, Indonesia
Ermita Rizky Albirri University of Jember, Indonesia
Robiatul Adawayah University of Jember, Indonesia
Dwi Agustin Retno Wardani IKIP PGRI Jember, Indonesia
Scientific Committee and Reviewers

Joe Ryan University of Newcastle, Australia
Kinkar Chandra Das Sungkyunkwan University, Republic of Korea
Octavio Paulo Vera Villagran University of Bio-Bio, Chile
Ali Ahmad Jazan University, Saudi Arabia
Roslan Hasni Universiti Malaysia Terengganu, Malaysia
Kiki A. Sugeng University of Indonesia, Indonesia
Rinovia Simajuntak Institut Teknologi Bandung, Indonesia
Hilda Assiyatun Institut Teknologi Bandung, Indonesia
Liliek Susilowati Universitas Airlangga, Indonesia
Diary Indriati Universitas Sebelas Maret, Indonesia
Syaiful Bukhori University of Jember, Indonesia
Antonis Cahya Prihandoko University of Jember, Indonesia
Bambang Sujaanarko University of Jember, Indonesia
Khairul Anam University of Jember, Indonesia

The committees of the First International Conference on Combinatorics, Graph Theory and Network Topology would like to express gratitude to all Committees for the volunteering support and contribution in the editing and reviewing process.
Peer review statement

To cite this article: 2018 J. Phys.: Conf. Ser. 1008 011003

View the article online for updates and enhancements.
Peer review statement

All papers published in this volume of *Journal of Physics: Conference Series* have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.
Table of contents

Volume 1008

2018

* Previous issue

The 1st International Conference of Combinatorics, Graph Theory, and Network Topology

25–26 November 2017, The University of Jember, East Java, Indonesia

View all abstracts

Accepted papers received: 9 April 2018

Published online: 27 April 2018

Preface

OPEN ACCESS

The 1st International Conference of Combinatorics, Graph Theory, and Network Topology

- View abstract
- View article
- PDF

OPEN ACCESS

The Committees of The First International Conference on Combinatorics, Graph Theory and Network Topology (ICCGANT)

- View abstract
- View article
- PDF

OPEN ACCESS

Peer review statement

- View abstract
- View article
- PDF

Papers

Applied Mathematics

OPEN ACCESS

The effect of heat generation on mixed convection flow in nano fluids over a horizontal circular cylinder

Bagus Julyanto, Basuki Widodo and Chairul Imron

- View abstract
- View article
- PDF

OPEN ACCESS

Performance comparison analysis library communication cluster system using merge sort

D A R Wulandari and M E Ramadhan

- View abstract
- View article
- PDF

OPEN ACCESS

The Development of Web-based Graphical User Interface for Unified Modeling Data with Multi (Correlated) Responses
I Made Tirta and Dian Anggraeni

Mammogram classification scheme using 2D-discrete wavelet and local binary pattern for detection of breast cancer
Januar Adi Putra

Continuous connection of two adjacent pipe parts defined by line, bézier and hermit center curves
Kusno and Antonius Cahyo Prihandoko

The development rainfall forecasting using kalman filter
Mohammad Zulf, Moh. Hasan and Kosal Dwidja Purnomo

Comparison of exact, efron and breslow parameter approach method on hazard ratio and stratified cox regression model
Mohamat Fatekurohman, Nita Nurmala and Dian Anggraeni

Fractional kalman filter to estimate the concentration of air pollution
Yessy Vita Oktaviana, Erna Apriliani and Didik Khusnul Arif

Fire spread estimation on forest wildfire using ensemble kalman filter
Wardatus Syanfah and Erna Apriliani

Determination system for solar cell layout in traffic light network using dominating set
Windi Eka Yulia Retnani, Belyanes Z. Fambudi and Slamin

Sentiment analysis system for movie review in Bahasa Indonesia using naive bayes classifier method
Yanuar Nurdiansyah, Safitul Bukhari and Rahmad Hidayat

Tunneling effect on double potential barriers GaAs and PbS
S H B Prastowo, B Supriadi, Z R Ridlo and T Prihandono
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>View Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>The stark effect on the spectrum energy of tritium in first excited state with relativistic condition</td>
<td>S H B Prastowo, B Supriadi, S Bahri and Z R Ridlo</td>
<td>View abstract, View article, PDF</td>
</tr>
<tr>
<td>Water hyacinth cellulose-based membrane for adsorption of liquid waste dyes and chromium</td>
<td>Cintia Agtasia Putri, Ian Yulianti, Ika Desiana, Anisa Sholihah and Sujiwarta</td>
<td>View abstract, View article, PDF</td>
</tr>
<tr>
<td>Wireless SAW passive tag temperature measurement in the collision case</td>
<td>A. Sorokin, A. Shepeta and M. Wattimena</td>
<td>View abstract, View article, PDF</td>
</tr>
<tr>
<td>Image encryption based on pixel bit modification</td>
<td>Kiswara Agung, Fatmawati and Herry Suprijitno</td>
<td>View abstract, View article, PDF</td>
</tr>
<tr>
<td>Stock price estimation using ensemble Kalman Filter square root method</td>
<td>D F Karya, P Katias and T Herlambang</td>
<td>View abstract, View article, PDF</td>
</tr>
<tr>
<td>Statistical bias correction modelling for seasonal rainfall forecast for the case of Bali island</td>
<td>D Lealdi, S Nurdiati and A Sopaheluuanan</td>
<td>View abstract, View article, PDF</td>
</tr>
<tr>
<td>Ensemble averaging and stacking of ARIMA and GSTAR model for rainfall forecasting</td>
<td>D Anggraeni, I F Kurnia and A F Hadi</td>
<td>View abstract, View article, PDF</td>
</tr>
<tr>
<td>A generalization of Cesàro sequence spaces in the Orlicz space</td>
<td>Haryadi, Suparna and A Zulianto</td>
<td>View abstract, View article, PDF</td>
</tr>
<tr>
<td>An algorithm of Saxena-Easo on fuzzy time series forecasting</td>
<td>L C Ramadhani, D Anggraeni, A Kamsyakawuni and A F Hadi</td>
<td>View abstract, View article, PDF</td>
</tr>
<tr>
<td>The modelling influence of water content to mechanical parameter of soil in analysis of slope stability</td>
<td>M Gusman, A Nazki and R R Putra</td>
<td>View abstract, View article, PDF</td>
</tr>
<tr>
<td>Hybrid ARIMAX quantile regression method for forecasting short term electricity consumption in east java</td>
<td>M Prastuti, Suhartono and NA Salehah</td>
<td>View abstract, View article, PDF</td>
</tr>
</tbody>
</table>
OPEN ACCESS
Analysis of *Salmonella* sp bacterial contamination on Vannamoe Shrimp using binary logit model approach
P P Oktaviana and K Fitrihasari

OPEN ACCESS
Copula-based model for rainfall and El- Niño in Banyuwangi Indonesia
R E Caraka, Supari and M Tahmid

OPEN ACCESS
Estimation of water level and steam temperature using ensemble Kalman filter square root (EnKF-SR)
T Herlambang, Z Mufarrikoh, D F Karya and D Rahmali

Combinatorics

OPEN ACCESS
On the Total Edge Irregularity Strength of Generalized Butterfly Graph
Hafidhah Dwi Wahyuna and Diari Indriati

OPEN ACCESS
The neighbourhood polynomial of some families of dendrimers
Mohamad Nazi Husin and Roslan Hasni

OPEN ACCESS
On $P_2 \bigodot P_n$-supermagic labeling of edge corona product of cycle and path graph
R Yullanto and Titin S Martini

OPEN ACCESS
Optimization of scheduling system for plant watering using electric cars in agro technopark
Nelly Oktavia Adiwijaya, Yudha Herlambang and Siamin

OPEN ACCESS
Alternative construction of graceful symmetric trees
I P Sandy, A Rizal, E N Manurung and K A Sugeng

OPEN ACCESS
On the strong metric dimension of sun graph, windmill graph, and möbius ladder graph
Mila Widyaingrum and Tri Atmojo Kusmayadi

OPEN ACCESS
On the r-dynamic chromatic number of the coronation by complete graph
Arika Indah Kristiana, M. Imam Utoyo and Dafik
Restricted Size Ramsey Number for $2K_2$ versus Dense Connected Graphs of Order Six
Denny Riama Silaban, Eddy Tri Baskoro and Saladin Uttunggadewa

On the local vertex antimagic total coloring of some families tree
Desi Febriani Putri, Dafik, Ika Hesti Agustin and Ridho Alfarisi

Super local edge antimagic total coloring of $P_n \bowtie H$
Elsa Yuni Kurniawati, Ika Hesti Agustin, Dafik and Ridho Alfarisi

On the modification Highly Connected Subgraphs (HCS) algorithm in graph clustering for weighted graph
E R Albirri, K A Sugeng and D Aldia

Local Edge Antimagic Coloring of Comb Product of Graphs
Ika Hesti Agustin, Moh. Hasan, Dafik, Ridho Alfarasi, A.I. Kristiana and R. M. Prihandini

The Construction of $P_2 \bowtie H$-antimagic graph using smaller edge-antimagic vertex labeling
Rafiantika M. Prihandini, I.H. Agustin and Dafik

The non-isolated resolving number of k-corona product of graphs
Ridho Alfarisi, Dafik, Slamir, I. H. Agustin and A. I. Kristiana

Locating domination number of m-shadowing of graphs
Dafik, Ika Hesti Agustin, Ermita Rizki Albirri, Ridho Alfarasi and R. M. Prihandini

On the total irregularity strength of caterpillar with each internal vertex has degree three
Diari Indriati, Isnaini Rosyida and Widodo

On the locating domination number of $P_ n [\text{triangleright} \text{equal}] H$ graph
Dwi Agustin Retno Wardani, Ika Hesti Agustin, Dafik and Ridho Alfarisi
Open Access
On the local edge antimagicness of m-splitting graphs
E R Albirri, Dafik, Siamin, I H Agusti and R Alfarisi

Open Access
Non-isolated Resolving Sets of certain Graphs Cartesian Product with a Path
I M Hasibuan, A N M Saiman and S W Saputro

Open Access
On total irregularity strength of caterpillar graphs with two leaves on each internal vertex
I Rosyida, Widodo and D Indriati

Open Access
Super (a,d)-H-antimagic covering of Möbius ladder graph
Novia Indriyani and Titin Sury Martini

Open Access
On the strong metric dimension of generalized butterfly graph, starbarbell graph, and $C_m \odot P_n$ graph
Rath Yunita Mayasari and Tri Atmojo Kusmayadi

Open Access
Total edge irregularity strength of (n,t)-kite graph
Tri Winarsih and Diah Indriati

Open Access
The local metric dimension of starbarbell graph, $K_m \odot P_n$ graph, and Möbius ladder graph
Wahyu Tri Budianto and Tri Atmojo Kusmayadi

Open Access
On the strong metric dimension of antiprism graph, king graph, and $K_m \odot K_z$ graph
Yuyun Mintarsih and Tri Atmojo Kusmayadi

Open Access
On rainbow connection and strong rainbow connection number of amalgamation of prism graph $P_{3,2}$
C.D.R. Palupi, W. Anbowo, Y. Irene and I. Hasanah

Open Access
On the locating domination number of corona product
Risan Nur Santi, Ika Hestri Agustian, Dafik and Ridho Alfarisi

Open Access
On the total rainbow connection of the wheel related graphs
On the (Strong) Rainbow Vertex Connection of Graphs Resulting from Edge Comb Product
Dafik, Slamin and Agustina Muharrromah

Comparison of learning models based on mathematics logical intelligence in affective domain
Anf Widayanto, Hash Pratiwi and Mardiynasa

Remembering the hindu festivities mathematically by the balinese using integer operations and least common multiple
Jero Budi Darmayasa, Wahyudin, Tatang Mulyana and Muchamad Subali Noto

Students' misconception on equal sign
N F Kusuma, S Subanti and B Usodo

The 21st century skills with model eliciting activities on linear program
Septriana Handajani, Hash Pratiwi and Mardiynasa

Global conjecturing process in pattern generalization problem
Sutarto, Toto Nusantara, Subanji, Intan Dwi Hastuti and Dafik

The characteristics of failure among students who experienced pseudo thinking
D Anggraini, T A Kusmayadi and I Pramudya

Metacognitive experience of mathematics education students in open start problem solving based on intrapersonal intelligence
D P Sarl, B Usodo and S Subanti

Analysis of difficulties in mathematics problem solving based on revised Bloom's Taxonomy viewed from high self-efficacy
R D E Prisman, T A Kusmayadi and I Pramudya
<table>
<thead>
<tr>
<th>Title</th>
<th>Document Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigating students' failure in fractional concept construction</td>
<td>012064</td>
</tr>
<tr>
<td>Henry Kurniawan, Akbar Sutawidjaja, Abdur Rahman As'ari, Makbul Muksar and Iwan Setlawan</td>
<td></td>
</tr>
<tr>
<td>Analysis of students' creative thinking level in problem solving based on national council of teachers of mathematics</td>
<td>012065</td>
</tr>
<tr>
<td>Hobri, Suharto and Ahmad Rifqi Naja</td>
<td></td>
</tr>
<tr>
<td>Discover the pythagorean theorem using interactive multimedia learning</td>
<td>012066</td>
</tr>
<tr>
<td>I Adhitama, I Sujadi and I Pramudyya</td>
<td></td>
</tr>
<tr>
<td>Technological pedagogical content knowledge of junior high school mathematics teachers in teaching linear equation</td>
<td>012067</td>
</tr>
<tr>
<td>S Warti, L Fitriana and Mardiyana</td>
<td></td>
</tr>
<tr>
<td>Problem solving of student with visual impairment related to mathematical literacy problem</td>
<td>012068</td>
</tr>
<tr>
<td>A R Pratama, D R S Suputro and Riyadi</td>
<td></td>
</tr>
<tr>
<td>Interference thinking in constructing students' knowledge to solve mathematical problems</td>
<td>012069</td>
</tr>
<tr>
<td>W E Jayanti, B Usodo and S Subanti</td>
<td></td>
</tr>
<tr>
<td>High profile students' growth of mathematical understanding in solving linear programming problems</td>
<td>012070</td>
</tr>
<tr>
<td>Utomo, TA Kusmayadi and I Pramudyya</td>
<td></td>
</tr>
<tr>
<td>Students' logical-mathematical intelligence profile</td>
<td>012071</td>
</tr>
<tr>
<td>D P Arum, T A Kusmayadi and I Pramudyya</td>
<td></td>
</tr>
<tr>
<td>Students creative thinking skills in solving two dimensional arithmetic series through research-based learning</td>
<td>012072</td>
</tr>
<tr>
<td>M Tohir, Z Abidin, Daifik and Hobri</td>
<td></td>
</tr>
<tr>
<td>The errors of metacognitive evaluation on metacognitive failure of students in mathematical problem solving</td>
<td>012073</td>
</tr>
<tr>
<td>Niziel Huda, Akbar Sutawidjaja, Subanji and Swasono Rahardjo</td>
<td></td>
</tr>
</tbody>
</table>
Gender differences in prospective teachers' mathematical literacy: problem solving of occupational context on shipping company
N D S Lestari, D Juniati and St. Suwarsono
[View abstract] [View article] [PDF]

The Use of Interactive Media *Ispring Suite 8* Supported by *Google SketchUp* to Improve Students’ Geometry Skills Based on Hoffer’s Theory
A Nurwijayanti, Budiyono and L Fitriana
[View abstract] [View article] [PDF]

Analysis of difficulties in mathematics learning on students with guardian personality type in problem-solving HOTS geometry test
R K N Karimah, T A Kusmayadi and I Pramudya
[View abstract] [View article] [PDF]

Geometry in flipbook multimedia, a role of technology to improve mathematics learning quality: the case in madura, east java
S Andini, L Fitriana and Budiyono
[View abstract] [View article] [PDF]

Profile of mathematical reasoning ability of 8th grade students seen from communicational ability, basic skills, connection, and logical thinking
Sumarsih, Budiyono and D Indriati
[View abstract] [View article] [PDF]

Students' thinking preferences in solving mathematics problems based on learning styles: a comparison of paper-pencil and geogebra
Umi Farihah
[View abstract] [View article] [PDF]
Journal of Physics: Conference Series is a journal published by Institute of Physics. It covers the subject area of Physics and Astronomy and has an ISSN of 17426588. The journal is ongoing from 2005.

The scope of the journal has changed from 1 January 2010. IOP Publishing’s open access proceedings titles no longer require authors to sign and submit copyright forms. For the following titles: Journal of Physics: Conference Series, IOP Conference Series: Materials Science and Engineering, IOP Conference Series: Earth and Environmental Science, the assignment of copyright forms are being replaced by a publishing licence under which authors retain their copyright. Please note that our regular journals are unaffected by this change. (source)
Digital Repository Universitas Jember

Journal of Physics: Conference Series

Show this widget in your own website

Just copy the code below and paste within your html code:

```html
```
Performance comparison analysis library communication cluster system using merge sort

To cite this article: D A R Wulandari and M E Ramadhan 2018 J. Phys.: Conf. Ser. 1008 012002

View the article online for updates and enhancements.

Related content
- MPI support in the DIRAC Pilot Job Workload Management System
 A Tsaregorodtsev and V Hamar
- BEACH 2016: an Overview (of sorts)
 P D Rubin
- A PARALLEL MONTE CARLO CODE FOR SIMULATING COLLISIONAL N-BODY SYSTEMS
 Bharath Pattabiraman, Stefan Umbreit, Wei-keng Liao et al.
Performance comparison analysis library communication cluster system using merge sort

D A R Wulandari¹, M E Ramadhan²
¹Information System of Department, University of Jember, Jember, Indonesia
²Mechanical engineering of Department, University of Jember, Jember, Indonesia
E-mail: edwarditsdesain@gmail.com; diah.retnaniw@gmail.com

Abstract. Begins by using a single processor, to increase the speed of computing time, the use of multi-processor was introduced. The second paradigm is known as parallel computing, example cluster. The cluster must have the communication protocol for processing, one of it is message passing Interface (MPI). MPI have many library, both of them OPENMPI and MPICH2. Performance of the cluster machine depend on suitable between performance characters of library communication and characters of the problem so this study aims to analyze the comparative performances libraries in handling parallel computing process. The case study in this research are MPICH2 and OpenMPI. This case research execute sorting’s problem to know the performance of cluster system. The sorting problem use mergesort method. The research method is by implementing OpenMPI and MPICH2 on a Linux-based cluster by using five computer virtual then analyze the performance of the system by different scenario tests and three parameters for to know the performance of MPICH2 and OpenMPI. These performances are execution time, speedup and efficiency. The results of this study showed that the addition of each data size makes OpenMPI and MPICH2 have an average speed-up and efficiency tend to increase but at a large data size decreases. increased data size doesn’t necessarily increased speed up and efficiency but only execution time example in 100000 data size. OpenMPI has a execution time greater than MPICH2 example in 1000 data size average execution time with MPICH2 is 0.009721 and OpenMPI is 0.003895 OpenMPI can customize communication needs.

1. Introduction

The technology grows rapidly and new computation paradigms are also being developed. Started by computation process with single processor in the past, recently the usage of multi-processor computers for parallel computing is very common, in order to speed up the computation period. To carry out various kinds of parallel computing, then there is a need for parallel machines infrastructures that consist of a number of computers connected by network able to solve certain problem in parallel.

There are two types of parallel computers, which are Shared Memory Multiprocessor and Distributed Memory Multicomputer. Cluster system belongs to Distributed Memory Multicomputer, which is two or more computers or nodes that are connected into a single integrated system. In a previous study found that the distributed computing make many motivation for implementation because can solve many large problem from large data sets using more than one computers that to be a single integrated resource system. The main point in cluster system is how to the resource sharing all members by efficiently for handling the large problem or data. Each cluster members have each function. there are master and slave. a master node manages the resources needed for the job, divides
the job into parts of the job then assigns the job to each slave. And slave node do task from master node. When the resource is available the task from master gets executed. master give a job to a available of members. When there is no available members, a task goes into a work queue. [1]. The most important part of cluster computer is middleware application that is capable to integrate all computer members within the cluster so that they can work together. The main task of middleware is to communicate and synchronize computers within that particular cluster. One famous cluster's middleware is MPI (Message Passing Interface), which is an independent language of communication protocol in parallel programming. Many MPI libraries have strengths and weaknesses in each implementations [2]. There are numerous libraries in MPI, some of them are GridMPI, OpenMPI, MPICH-Madeleine, MPICH-G2, MPICH-VMI, MPICH2, LAM/MPI [2] [3]. All library of MPI have different process management but the purpose is integrated more than one computers or processors to be a single system with parallel process and establishing a portable, efficient, and flexible standard for message passing that used for writing message passing programs from node to node[4] [5].

There are several available libraries that facilitate the implementation of MPI, such as MPICH2 and openMPI. OpenMPI is proven to have the ability to adjust communication management efficiently, based on the characteristics of existing infrastructure [6]. The testing of cluster system performance can be conducted by implementing certain computer program, and in this research was parallel mergesort. Parallel mergesort is a modification of the old sequential mergesort, in which it supports parallel sorting. Parallel mergesort algorithm is relatively easy to set up since it has divide and conquer method, which can work in parallel [7].

In a previous study found that the distributed computing especially cluster make many motivation for implementation. Implementation using PC-cluster. In this research study about performance analysis communication middleware. Communication middleware in cluster system is very important because the cluster system needs communication tools to work together between many computers to be single integrated system resource. This research compare between MPICH2 and OpenMPI. In a previous study speed-up and efficiency can be parameters of performance when both were solving similar computation process was conducted so this research use speed-up and efficiency to know the parameters both MPICH2 and OpenMPI[8]. In this case, a sorting problem was used. Mergesort was implemented in this research for solving sorting problem. It was used since they are the fastest existing algorithms and is capable of working in parallel. Cluster system was established using virtualization so that it could undertake parallel computing process more efficiently. MPICH2 and OpenMPI were chosen among many other available algorithms for their advantages among their competitors, in which both of them are more well-known and are more commonly utilized.

2. Methods

The analysis of computation process within this research was conducted by comparing the performance of MPICH2 and OpenMPI in solving a sorting problem. In order to carry out the research, the following steps should be conducted:

1. Study related papers about OpenMPI and MPICH2 clustering system, sorting program using mergesort and quicksort methods, and measurement analysis. This literature study was undertaken by utilizing various resources, such as books, journal papers, and electronic documents on the Internet.

2. Design and implement cluster processes, which were conducted in the following orders:
 a. All virtual computers were installed with distro Linux Ubuntu desktop v.10.04 – Lucid Lynx operating system. This research use 5 virtual computer for master and slave (slave is member names of this cluster members). Virtual computer from IT as a service cloud computing was used because the cost-efficient of infrastructure [9].
 b. All of computers has configured in network connection without configured because using virtual computere from IAAS cloud system, Figure 1.
c. Identification of all nodes by defining the IP address and hostname of each node. The master must know about the IP address of all members in the system to assign their tasks, and each member must know the IP address of their master to receive their tasks from the master.

d. Configuring SSH can communicate and conduct data exchange to all nodes without having to provide authentication process. In the implementation, the master node generates a public key which is a random number. This public key will then be sent to the SSH folder on the slave node. Once the public key of the master node is sent into the SSH folder, the public key is converted into an authorized key so that when the master node performs an SSH connection on the slave node, SSH on the slave node will check whether the computer that will access it has been registered in the authorized keys on the slave node. If indeed the computer that will access it is listed, then the master node can access without having to enter the slave node password first.

e. Configuring NFS, in this cluster system, the directory to be shared is the data directory, in this directory is used to store the files used for the test sample. NFS serves to perform a shared directory that will be used for file sharing.

f. MPICH2 and openMPI were installed and configured in five virtual computers. Hence, there are one master computer and four slave computers.

g. Installation and configuration of Build Essential for running and executing parallel sorting program using C language program.

3. Implementing cluster system and testing analysis.

![Image of cluster system design](figure1.png)

Figure 1. Cluster system design; (a) private cloud computing architecture, (b) focus of this research on cluster system design, (c) notebook as remote controller

The cluster system consisted of five homogeneous virtual computers provided by cloud service. One of those five virtual computers was dedicated as master node and the rest four computers were used as slave nodes. Each node was installed with open source operating system Linux Ubuntu 10.04 LTS (Lucid Lynx). From existing five virtual nodes, it was then possible to establish two cluster systems, which were Cluster A implementing MPICH2 library and Cluster B implementing openMPI library. Figure 3.1 describes the architectural design of the cluster system implemented in this research. openMPI library was chosen among other MPI libraries because it is one of the most famous libraries in parallel computing and because of its good performance. Both libraries have their own unique characteristics, syntaxes, and advantages that are worth comparing.

4. Cluster system performance test was conducted by executing computation program on cluster system with the following scenario:

The purpose of cluster system performance testing was to understand the performance comparison between MPICH2 and openMPI in terms of speed-up and efficiency. Random number sorting problem was implemented in C programming language to test system performance. Two sorting methods used in this research were mergesort algorithms. Number of tested data was configured to be varied, ranging from 100, 1000, 10,000 to 100,000 data size. The data size is number random.
5. Resource monitoring system using HTOP tool.

6. Comparing the result of parallel computing using MPICH2 and that of openMPI, and then deriving conclusion.

Merge sort is used for testing the performance of this cluster system. Mergesort is a sorting algorithm that uses the divide and conquer approach. In a parallel process, the first uncompleted list is divided into two sublists by a single processor, then the sublists are sent to another processor. Each processor handles one sublist. Each sublist is subdivided into two smaller sections, the sublist division is done until the sublist is unbreakable or subdivided, until there is only a number in a sublist. Then each sublist is merged into a new sublist with two numbers then reassembled into each sublist of four numbers until all the numbers on the sublist are combined into one ordered list, Figure 2.

![Diagram of Parallel Merge Sort](image)

Figure 2. How To Work Parallel Merge Sort

In this research use three parameters. They are time execution, speed-up and efficiency for testing performance analysis [10]. Speed-up of a program (S_p) is defined as the time it takes a program to execute in serial using one processor or computer (t_s) divided by the time it takes to execute in parallel using many processors or many computer (t_p). The formula for speedup is in equation (1).

$$S_p = \frac{t_s}{t_p} \quad (1)$$

Another metric to measure the performance of a parallel algorithm is efficiency. Efficiency is speed-up divided processors that this system use. The formula for efficiency is in equation (2).

$$E = \frac{S_p}{P} \quad (2)$$

3. Result and Discussion

Cluster system capability testing in computing process on both cluster systems using execution time, speed-up parameters, and efficiency. Cluster testing is done by running some sample array sorting program which contains integer numbers in four scenarios. The mergesort method is chosen because it uses the divide and conquer method approach, including the fastest and stable sorting method. In another research Divide and Conquer has been designed to work in machines with multiple processors. This test is by sorting random numbers of integer types with intervals of 100 to 100000 numbers or data size. This test will be done using several scenarios. That is using one (sequential) until five processors or computer (multiprocessors). The selection of data between 100 to 100000 random numbers is intended to show the significant difference in execution time. This scenario aims to see the effect of changing the number of nodes with the large amount of data on the execution time, and know what computing program is appropriate so that the performance of both libraries can work optimally. This research have four scenario. The scenario are executing the random number with interval 100,
1000, 10000, and 100000 data size by using sequential and parallel between two until five nodes. The purpose of this testing is performance of Open MPI and MPICH2 with three parameters. That is speed-up efficiency and execution time. The result of this testing are:

1. Execution time base on number of processor

![Graphical comparison OpenMPI and MPICH2 on average execution time for mergesort algorithm](image)

Comparison OpenMPI and MPICH2 on average execution time for merge sort at fig 3, show that The sistem cluster have good performance in data size more than 10000 random number because when the increasing processor execution time more faster then sequential, but have bad performance when the data size less than 1000 random number. When the data size less than 1000 random number the sequential performance more better then many processor. In sequential computing applications the resulting process time is computational time, which is the time needed to calculate the steps of computing. In parallel computing applications, in addition to determining computational time also needs to take into account the time required for communication in sending messages to the parallel application. increasing processor can retarded execution time when the data size less than 1000 random number. This incident caused all of processor have communication time for solve sorting number. Communication time be used for sharing data, divison of task each processor. OpenMPI has a execution time greater than MPICH2 example in 1000 data size average execution time WITH MPICH2 is 0.009721 and OpenMPI is 0.003895 OpenMPI can customize communication needs. OpenMPI faster then MPICH2 at 100 until 1000 data size but at 10000 until 100000 data size OpenMPI and MPICH2 have the same performance. This incident caused merge sort method have many communication t

canon in accordance with previous research that OpenMPI is able to adjust the communication settings efficiently in accordance with the characteristics of existing infrastructure [6], because in the openMPI architecture there is an MCA as a layer component that provides management services for all other layers [11].

2. Speed-up and efficiency

![Graphical comparison OpenMPI and MPICH2 on average execution time for mergesort algorithm](image)
Figure 4. Graphical comparison OpenMPI and MPICH2 on average execution time for mergesort algorithm

comparison OpenMPI and MPICH2 on speed-up for merge sort at fig 4, show that OpenMPI and MPICH2 have almost the same performance at more than 10000 data size. The speed-up value of MPICH2 is slightly smaller than that of openMPI. However, as the number of random number increased as large as 100,000, the speed-up value of MPICH2 significantly improved, compared to that of openMPI. The speed-up values on both libraries decreased as there were addition of more processors.

3. efficiency

Figure 5. Graphical comparison OpenMPI and MPICH2 on average execution time for mergesort algorithm

Figure 5 described efficiency comparison on both libraries based on the number of nodes. Firstly, the average efficiency rate on program was calculated when using openMPI library. Then, similar process conducted under MPICH2 was also done. The results of those to processes were then compared. Figure 5 showed that efficiency of MPICH2 was less than that of openMPI. Efficiency rates were also decreasing on both libraries as the number of processors increased. The unideal speed-up and efficiency was due to the existence of overhead in parallel system. For example, additional computation which was only required to parallel computing, communication among processors, and synchronization process. Such phenomenon worked on all parallel systems and the speed-up and efficiency trends followed Amdahl's Law. However, speed-up and efficiency would also increase as the data size also getting larger, and that was in parallel with Gustafson's Law. While the addition of processors would decrease efficiency rate, the increase of data size would improve the efficiency [12].

According to Figure four and five, it was clearly seen that as the number of data ranged from 100 up to 10,000, the speed-up and efficiency rate increased as the data grew larger. However, when the random number were as large as 100,000 data, both speed-up and efficiency rare got smaller. Therefore, it was then known that the maximum speed-up and efficiency rate were on 10,000 data size, for all possible test cases scenario, from using two nodes up to five nodes. After conducting this research, it was proven that increasing the size of problem by executing larger data was not necessarily improving speed-up and efficiency. According to Amdal's Law, after some certain limit, speed-up and efficiency would decrease because the existence of larger communication time overhead compared to that of computation time on parallel algorithm. It was also possible due to the unpredicted computation task, imbalance of tasks distribution among processors, the existence of excessive sequential code, or the existence of pure sequential code. In some algorithms, the existence of might reduce the average speed-up time. As the data grew, the execution time both on serial and parallel processing would also increase. As the data grew as large as 100,000, the speed-up decreased because execution time on serial and parallel were getting slower, and therefore the difference between the two were smaller.
4. Conclusion
In this paper, we discuss about performance between two library communication of MPI to handle task in cluster system. There are MPICH2 AND OpenMPI. The task is sorting number 100 until 100000 data size using mergesort method. Performance parameters use speed-up, efficiency and execution time. The result found that when the small data size execute in sequential processing, the performance is better than executing in cluster system using more than one processors / computers. When the data size are large, the performance of cluster system more faster than sequential process using one computer or one processor. Execution time of openMPI tends to be faster than that of MPICH2 for small size data, because programs conduct more communication process. However, execution time of MPICH2 tends to be faster as the data gets larger in size, since the increase of computation process reduces the communication effect. The values of openMPI's efficiency rate and speed-up tend to be greater than that of MPICH2 on small size data, ranging from 100 to 10,000 data. In contrary, the number of data increases, such as 100,000. The values of efficiency rate and speed-up of MPICH2 are better than that of openMPI. Within such scenario, the speed-up difference is 3,1429 and the efficiency rate difference is 0,754. From the result found that implementation library communication of middleware communication have affect in performance of cluster system. Many library communication of middleware communication is in cluster system, but we must to know about suitability between characters of the task and characters of library communication from communication time parameters for optimization of cluster system. Cluster system need communication time to share the task in all members but do not spend long time to communicate between all members because it make decreasing performance, the execution time will be slower, so we need discuss about that in further research.

Acknowledgments
This paper is a part of my research when i was in student of master degree that I developed again. I would like to express my gratitude to my advisors and my team of cluster system for supporting this research. This paper could not be written to its fullest without them, who served as well as one who challenged and encouraged me throughout my time spent studying. They would have never accepted anything less than my best efforts, and for that, I thank them for all support and togetherness they give when we did this research.

Reference
Performance comparison analysis library communication cluster system using merge sort

Abstract

Recently, using a single processor to accomplish the speed of computer computing is slow compared to using multi-processors. The speedup gained is parallel computing, except when the cluster consists of the computer with a set of processors in a master-slave computing. Therefore, the research in parallel programming needs to consider the system structure. This study aims to compare the performance of the communication libraries Parallel Virtual Machine (PVM) and MPI. Both of these libraries are used to compare the difference in performance. The performance of the communication libraries is measured in terms of performance, such as the time required to complete a task. The experiments were performed on AMD Opteron and AMD Bulldozer. The best results were obtained using PVM and OpenMP. The results showed that using PVM and OpenMP is more efficient than using AMD Bulldozer.
Wulandari, Diah Ayu Retnani

Universitas Jember, Information System Department, Jember, Indonesia
Author ID: 57202279674

Judul: Performance comparison analysis library communication cluster system using merge sort

Bukti terindex, scopus dan terbit di http://iopscience.iop.org/issue/1742-6596/1008/1