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Abstract. In this paper we use simple and non trivial graph. If there exist a
bijective function g : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|}, such that for all
subgraphs P2 B H of G isomorphic to H, then graph G is called an (a, d)-P2 B H-
antimagic total graph. Furthermore, we can consider the total P2 B H-weights
W (P2 B H) =

P
v∈V (P2BH) f(v) +

P
e∈E(P2BH) f(e) which should form an arithmetic

sequence {a, a + d, a + 2d, ..., a + (n − 1)d}, where a and d are positive integers and
n is the number of all subgraphs isomorphic to H. Our paper describes the existence
of super (a, d)-P2 B H antimagic total labeling for graph operation of comb product
namely of G = L B H, where L is a (b, d∗)-edge antimagic vertex labeling graph and
H is a connected graph.

1. Introduction
In this paper we consider simple and nontrivial graphs. One of the graph operation

is a comb product. Saputro, et.al in [16], defined a comb product of L and H, denoted
by LBH. Comb product is a graph obtained by taking one copy of L and |V (L)| copies
of H and grafting the i-th copy of H at the vertex o to the i-th vertex of L. Thus, we
have V (L B H) = {(a, v)|a ∈ V (L), v ∈ V (H)} and (a, v)(b, w) ∈ E(L B H) whenever
a = b and vw ∈ E(H), or ab ∈ E(L) and v = w = o. Labeling is one to one mapping
which maps the set of graph elements into a set of integer. Furthermore, an (a, d)-edge-
antimagic vertex labeling is one to one mapping from g : V (G) → {1, 2, . . . , v} which
maps the set of vertices into a set of integer such that the set of edge weights of all edges
in G is {a, a + d, . . . , a + (e − 1)d}, where a > 0 and d ≥ 0 are integer set [2]. In this
paper we deal with labelings with domain either the set of all vertices and edges.

Suppose G = LBH and H ⊆ G, If there exist a bijective function g : V (G)∪E(G) →
{1, 2, . . . , |V (G)| + |E(G)|}, such that for all subgraphs P2 B H of G isomorphic to H,
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then graph G is called an (a, d)-P2 B H-antimagic total graph. Furthermore, we can
consider the total P2 B H-weights W (P2 B H) =

∑
v∈V (P2BH) f(v) +

∑
e∈E(P2BH) f(e)

which should form an arithmetic sequence {a, a+d, a+2d, ..., a+(n−1)d}, where a and
d are positive integers and n is the number of all subgraphs isomorphic to H. Dafik et al
in [7] proved cycle-super antimagicness of tensor product of two graphs, namely Cr⊗Pn

for odd r ≥ 3 any n ≥ 3. They have showed the tensor product and its disjoint union for
any m ≥ 2, admit a super (a, d)−C2r-antimagic total labeling for some feasible difference
d ∈ {4r, 4r2 + 2r, 6r2}. Many paper have published, some other relevant results can be
found in [1, 11, 12, 10] and [8, 14, 13, 15, 17, 18].

Recently, Dafik et. al in [5] showed the H-super antimagicness of a graph L when each
edge of L is replaced by a graph H. They used a special technique, which is called an
integer set partition technique, firstly introduced in [3]. They considered, for a connected
version of graph and k = 1, 2, . . . , n− 1, a partition Pn

c,d(i, k) of the set {1, 2, . . . , cn} of
n columns with n ≥ 2, c-rows such that the sum of the numbers in the kth c-rows forms
an arithmetic sequence of difference d.

Our paper investigate the existence of super (a, d)-P2 BH-antimagic total labeling of
G = LBH. We also show connection between P2 BH-antimagic total labeling and edge
antimagic vertex labeling. Labels of vertices by following the EAVL pattern, furthermore
we also found the general formula of feasible difference d of graph G = L B H.

2. A Useful Lemma and Corollary
Let order of graph L,H be respectively |V (L)|, |V (H)| and size |E(L)|, |E(H)|
respectively. The graph G = L B H is a connected graph with |V (G)| = |V (L)||V (H)|
and |E(G)| = |V (L)||E(H)|+ |E(L)|.Thus |V (G)| = npH and |E(G)| = nqH + qL. The
following lemma [4] is to define the upper bound of feasible d for G = L B H to be a
super (a, d)-H-antimagic total labeling.
Lemma 1. [4] Let G be a simple graph of order p and size q. If G is super (a, d)-H-
antimagic total labeling then d ≤ (pG−pH)pH+(qG−qH)qH

n−1 , for pG = |V (G)|, qG = |E(G)|,
pH = |V (H)|, qH = |E(H)|, and n = |H|.
Corollary 1. If the graph G = LBH admits super (a, d)-H-antimagic total labeling for
integer n ≥ 3, then d ≤ (p2

H+q2
H)(2pL−4)+2qHqL

qL−1

Lemma 2. [6] Let n and m be positive integers. The sum of Pn
m,c1(i, k) = {(k − 1)n +

k, 1 ≤ i ≤ c} and Pn
m,c2(i, k) = {(k − 1)c + i; 1 ≤ i ≤ c} form an aritmatic sequence

of difference d1 = c, d2 = c2}, respectively.

3. The Results
Lemma 3. Given that G = L B H. If L admits an edge antimagic vertex labeling
(EAV L), then the sum of the corresponding partition label graph of H form an arithmetic
sequence.

Proof. By an (a, d)-edge-antimagic vertex labeling of a (p, q) graph L we mean a one
to one mapping g from V (L) onto {1, 2, . . . , p} such that the set of edge weights of all
edges in G, {g(u) + g(v) : uv ∈ E(G)}, is W = {a, a + d, a + 2d, . . . , a + (q− 1)d}, where
a > 0 and d ≥ 0. Let {hi ∈ V (L); 1 ≤ i ≤ p} indicates the order of the label, thus the
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arbitrary pairs, hi, will form an arithmetic sequence. Let w be a set of an edge weight
obtained by arbitrary sum of pairs hi which w = {h1 + h2, h2 + h3, h3 + h4, . . . , (h1 +
h2) + (qL − 1)d} = {a, a + d, a + 2d, . . . , a + (qL − 1)d}, thus we can have the following
corresponding partition:

(i)
c∑

i=1

Pn
c,d∗(h1) +

c∑

i=1

Pn
c,d∗(h2) = Cn

c,d∗ + d∗h1 + Cn
c,d∗ + d∗h2

= Cn
c,d∗ + d∗h1 + Cn

c,d∗ + d∗h2

= 2Cn
c,d∗ + d∗(h1 + h2)

(ii)
c∑

i=1

Pn
c,d∗(h2) +

c∑

i=1

Pn
c,d∗(h3) = Cn

c,d∗ + d∗h2 + Cn
c,d∗ + d∗h3

= Cn
c,d∗ + d∗h2 + Cn

c,d∗ + d∗h3

= 2Cn
c,d∗ + d∗(h2 + h3)

(iii)
c∑

i=1

Pn
c,d∗(h3) +

c∑

i=1

Pn
c,d∗(h4) = Cn

c,d∗ + d∗h3 + Cn
c,d∗ + d∗h4

= Cn
c,d∗ + d∗h3 + Cn

c,d∗ + d∗h4

= 2Cn
c,d∗ + d∗(h3 + h4)

From the above, we can easily see that the sum of corresponding partition, P =
{2Cn

c,d∗ + d∗(a), 2Cn
c,d∗ + d∗(a + d), 2Cn

c,d∗ + d∗(a + 2d) . . . , 2Cn
c,d∗ + d∗(a + (qL − 1)d)}

, form an arithmetic sequence with b = dd∗. ¤

Theorem 1. Given the any graph H. If L admits (b, d∗)−EAV L, then the comb product
of the connected graph G = L B H admits super (a, d)− P2 B H antimagic total labeling
with d = d∗ + d∗(dv + de) + 1.

Proof. Let l be a (b, d∗) − EAV L of graph L. The set of all edge weights of the
edges of L under the labeling l is:
{wl(e) : e ∈ E(L)} = {b, b + d∗, b + 2d∗, . . . , b + (qL − 1)d∗} Denote the edges of graph L
by the symbols e1, e2, . . . , eqL such that:
{wl(e) = b + (k − 1)d∗ with 1 ≤ k ≤ qL} Let H be a connected graph, and G = L B H
contains pL subgraphs isomorphic to H, say H1,H2, . . . , HpL where the subgraphs
Hi replaces the vertex vi in graph L, i = 1, 2, . . . , pL. Construct a total labeling
g,g : V (L B H)∪E(L B H) → {1, 2, . . . , pLpH + qL + pLqH} constitute the following set:

g(VpH ) = {PpL

pH−1,dv
(i, k)⊕ pL}

g(EqL) = pHpL + j; 1 ≤ k ≤ qL

g(EqH ) = {PpL

qH ,de
(i, k)⊕ [pLpH + qL]}

where dv depends on pH − 1 and de depends on qH . Furthermore the weight of the
subgraphs Hi, i = 1, 2, . . . , pL in the following way:

W =
∑

v∈V (Hi)

f(v) +
∑

e∈E(Hi)

f(e)
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= (b + (k − 1)d∗) + (
pH−1∑

i=1

(PpL

pH−1,dv
(k)⊕ pL) + (pHpL + k) +

(
qH∑

i=1

(PpL

qH ,de
(k)⊕ pHpL + qL)

Based on Lemma 3 we are obtained

= [b + (k − 1)d∗] + [2CpL

pH−1,dv
+ dv(b + (k − 1)d∗)] + [pHpL + k] +

[2CpL

qH ,de
+ de(b + (k − 1)d∗)]

= b− d∗ + 2CpL

pH−1,dv
+ bdv − dvd1 + pHpL + 2CpL

qH ,de
+ bde − ded

∗ +

(d∗ + d∗(dv + de) + 1)k

From the above, we can easily see that W = {[b− d∗+ 2CpL

pH−1,dv
+ bdv − dvd1 + pHpL +

2CpL

qH ,de
+ bde − ded

∗] + d∗ + d∗(dv + de) + 1, [b− d∗ + 2CpL

pH−1,dv
+ bdv − dvd1 + pHpL +

2CpL

qH ,de
+ bde − ded

∗] + 2(d∗ + d∗(dv + de) + 1), . . . , [b − d∗ + 2CpL

pH−1,dv
+ bdv − dvd1 +

pHpL + 2CpL

qH ,de
+ bde − ded

∗] + k(d∗ + d∗(dv + de) + 1)} form an arithmetic sequence. It
completes the proof ¤

3.1. Special Families of Connected Graph
We have found a general formula for any graph. Now, in this section we describe
the existence of super (a, d) − P2 B H antimagicness of some special families namely
G = Pn B H and G = Sn B H.

Theorem 2. For n ≥ 2, the graph G = Pn B H admits a super (a, d)-P2 B H antimagic
total labeling with a = n(c2

1 − c1 + t1
2 − t1) + 3(c1 + c2

2 + t1 + t2
2) + 2nc1 + (c2 − c2

2) +
2c2n(c1 + 1) + 2t1(cn + 2n − 1) + (t2 − t2

2) + 2t2(cn + nt1 + 2n − 1) + 4 and feasible
d = 2(c1 + c2

2 + t1 + t2
2) + 3.

Proof. Graph G = Pn B H has vertex set V (G) = {zk; 1 ≤ k ≤ n} ∪ {zi,k; 1 ≤ i ≤
c; 1 ≤ k ≤ n} and edge set V (G) = {ek; 1 ≤ k ≤ n} ∪ {ei,k; 1 ≤ i ≤ c; 1 ≤ k ≤ n}.
Suppose c and t are two fix positive integers, with c = pH − 1 and t = qH . By Lemma 2
for i = 1, 2, . . . , c and k = 1, 2, . . . , n, we define the vertex and the edge labels as a linear
combination of Pn

c1,c1(i, k);Pn
c2,c22

(i, k), written as follows:

g1(zk) = {k; 1 ≤ k ≤ n}
g1(zi,k) = {Pn

c1,c1 ⊕ n} ∪ {Pn
c2,c22

⊕ n(c1 + 1)}
g1(ek) = {n(c + 1) + k; 1 ≤ k ≤ n− 1}

g1(el,k) = {Pn
t1,t1 ⊕ [n(c + 1) + (n− 1)]} ∪ {Pn

t2,t22
⊕ [n(c + 1 + t1) + (n− 1)]}

from the vertex and the edge labels, then it can be determined a function of the total
vertex-weight and edge-weight, written as follows:

w1
g1

= k + k + 1 = 2k + 1
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w2
g1

= [
c∑

i=1

Pn
c1,c1(i, k)⊕ nc1 +

c∑

i=1

Pn
c1,c1(i, k + 1)⊕ nc1] + [

c∑

i=1

Pn
c2,c22

(i, k)⊕

nc2(c1 + 1) +
c∑

i=1

Pn
c2,c22

(i, k + 1)⊕ nc2(c1 + 1)]

= [Pn
c1,c1(k)⊕ nc1 + Pn

c1,c1(k + 1)⊕ nc1] + [Pn
c2,c22

(k)⊕ nc2(c1 + 1) +

Pn
c2,c22

(k + 1)⊕ nc2(c1 + 1)]

= {[n
2
(c2

1 − c1) + c1k + nc1] + [
n

2
(c2

1 − c1) + c1k + c1 + nc1]}+

{[c2 − c2
2

2
+ c2

2k + c2n(c1 + 1)] + [
c2 − c2

2

2
+ c2

2k + c2
2 + c2n(c1 + 1)]}

= {n(c2
1 − c1) + 2c1k + c1 + 2nc1}+ {(c2 − c2

2) + 2c2
2k + c2

2 +
2c2n(c1 + 1)}

w3
g1

= [
t∑

l=1

Pn
t1,t1(i, k)⊕ r1(cn + 2n− 1) +

t∑

l=1

Pn
t1,t1(i, k + 1)⊕ t1(cn + 2n− 1)] +

[
t∑

l=1

Pn
t2,t22

(i, k)⊕ t2(cn + nt1 + 2n− 1) +
t∑

l=1

Pn
t2,t22

(i, k + 1)⊕ t2(cn + nt1 +

2n− 1)]
= [Pn

t1,t1(k)⊕ t1(cn + 2n− 1) + Pn
t1,t1(k + 1)⊕ t1(cn + 2n− 1)] + [Pn

t2,t22
(k)

⊕t2(cn + nt1 + 2n− 1) + Pn
t2,t22

(k + 1)⊕ t2(cn + nt1 + 2n− 1)]

= {[n
2
(t21 − t1) + t1k + t1(cn + 2n− 1)] + [

n

2
(t21 − t1) + t1k + t1 + t1(cn +

2n− 1)]}+ [
t2 − t22

2
+ t22k + t22 + t2(cn + nt1 + 2n− 1)]}{[ t2 − t22

2
+ t22k +

t2(cn + nt1 + 2n− 1)]
= { n(t12 − t1) + 2t1k + t1 + 2t1(cn + 2n− 1)}+ {(t2 − t2

2) + 2t2
2k + t2

2 +
2t2(cn + nt1 + 2n− 1)}

The vertex and edge label under the labeling g1 is a bijective function g1 : V (G)∪E(G) →
{1, 2, . . . , pG + qG}. The total edge-weights of G = Pn B H under the labeling g1, for
k = 1, 2, . . . , n, constitute the following sets:

W 1
g1

= w1
g1

+ w2
g1

+ n(c + 1) + k + w3
g1

= 2k + 1 + w2
g1

+ n(c + 1) + k + w3
g1

= C + [2(c1 + c2
2 + t1 + t22) + 3]k; 1 ≤ k ≤ n− 1

with C = n(c2
1 − c1) + c1 + 2nc1 + (c2 − c2

2) + c2
2 + 2c2n(c1 + 1) + 1 + n(t12 − t1)

+ t1 +2t1(cn+2n−1)+(t2− t2
2)+ t2

2 +2t2(cn+nt1 +2n−1). It is easy that the set of
total edge-weights W 1

g1
consists of an arithmetic sequence of the smallest value a when

the total edge weights at k = 1 and the feasible difference d = 2[c1 + c2
2 + t1 + t22] + 3.
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Since the biggest d is attained when d = 2(c2
2 + t22) then, for c = pH and t = qH , it gives

d ≤ (p2
H+q2

H)(2n−4)+2(n−1)qH

n−2 . It concludes the proof. ¤
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Figure 1. Illustration of graph G = P4 B S7

Theorem 3. For n ≥ 1, the graph G = Sn B H admits a super (a, d)-P2 B H antimagic
total labeling with a = n + 2 + (n + 1)(c2

1 − c1) + c1(n + 2) + 2c1(n + 1) + c2 + c2
2(n +

1) + 2c2((n + 1)(c1 + 1)) + (n + 1)(t12 − t1) + t1(n + 2) + 2t1((n + 1)(c + 1) + n) + t2 +
t2

2(n + 1) + 2t22((n + 1)(c + t1 + 1) + n) feasible d = c1 + c2
2 + t1 + t22 + 2.

Proof. Graph G = Sn B H has vertex set V (G) = {x} ∪ {zk; 1 ≤ k ≤ n} ∪ {zi,k; 1 ≤
i ≤ c; 1 ≤ j ≤ n} and edge set V (G) = {ek; 1 ≤ k ≤ n} ∪ {el,k; 1 ≤ l ≤ t; 1 ≤ k ≤ n}.
Let c and t be positive integers, with c = pH − 1 and t = qH . For i = 1, 2, . . . , c and
k = 1, 2, . . . , n, by Lemma 2, 3, 4 and 5 we define the vertex and the edge labels as a
linear combination of Pn

c1,c1(i, k) and Pn
c2,c22

(i, k) as follows:

g2(x) = {n + 1}
g2(zk) = {k; 1 ≤ k ≤ n}

g2(xi,k) = {Pn
c1,c1 ⊕ (n + 1)} ∪ {Pn

c2,c22
⊕ (n + 1)(c1 + 1)}

g2(ek) = {(n + 1)(c + 1) + k; 1 ≤ k ≤ n}
g2(el,k) = {Pn

t1,t1 ⊕ [(n + 1)(c + 1) + n]} ∪ {Pn
t2,t22

⊕ [(n + 1)(c + t1 + 1) + n]}

then can be determined a function of the total vertex-weight and edge-weight
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Figure 2. Illustration of graph G = S3 B S7

w1
g2

= n + 1 + k

w2
g2

= [
c∑

i=1

Pn
c1,c1(i, k)⊕ c1(n + 1) +

c∑

i=1

Pn
c1,c1(i, n + 1)⊕ c1(n + 1)] +

[
c∑

i=1

Pn
c2,c22

(i, k)⊕ c2((n + 1)(c1 + 1)) +
c∑

i=1

Pn
c2,c22

(i, n + 1)

⊕c2((n + 1)(c1 + 1))]
= [Pn

c1,c1(k)⊕ c1(n + 1) + Pn
c1,c1(n + 1)⊕ c1(n + 1)] + [Pn

c2,c22
(k)

⊕c2((n + 1)(c1 + 1)) + Pn
c2,c22

(n + 1)⊕ c2((n + 1)(c1 + 1))]

= {[n + 1
2

(c2
1 − c1) + c1k + c1(n + 1)] + [

n + 1
2

(c2
1 − c1) + 2c1(n + 1)]

+[
c2 − c2

2

2
+ c2

2k + c2
2 + c2((n + 1)(c1 + 1))] + [

c2 − c2
2

2
+ c2

2(n + 1)

+c2
2 + c2((n + 1)(c1 + 1))]}

= [(n + 1)(c2
1 − c1) + c1(n + k + 1) + 2c1(n + 1)] + [c2 + c2

2(n + k)
+2c2((n + 1)(c1 + 1))]

w3
g2

= [
t∑

l=1

Pn
t1,t1(i, k)⊕ t1((n + 1)(c + 1) + n) +

t∑

l=1

Pn
t1,t1(i, n + 1)
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⊕t1((n + 1)(c + 1) + n)] + [
t∑

l=1

Pn
t2,t22

(i, k)⊕ t2(n(c + t1 + 1) + 1 + n)

+
t∑

l=1

Pn
t2,t22

(i, n + 1)⊕ t2(n(c + t1 + 1) + 1 + n)]

= [Pn
t1,t1(k)⊕ t1((n + 1)(c + 1) + n) + Pn

t1,t1(n + 1)⊕ t1((n + 1)(c + 1) + n)]
+[Pn

t2,t22
(k)⊕ t2((n + 1)(c + t1 + 1) + n) + Pn

t2,t22
(n + 1)

⊕t2((n + 1)(c + t1 + 1) + n)]

= {[n + 1
2

(t21 − t1) + t1k + t1((n + 1)(c + 1) + n)] + [
n + 1

2
(t21 − t1)

+t1(n + 1) + t1((n + 1)(c + 1) + n)] + [
t2 − t22

2
+ t22k + t22 +

t2((n + 1)(c + t1 + 1) + n)] + [
t2 − t22

2
+ t22(n + 1) + t22 +

t2((n + 1)(c + t1 + 1) + n)]}
= [(n + 1)(t21 − t1) + t1(n + k + 1) + 2t1((n + 1)(c + 1) + n)] + [t2 + t22(n + k)

+2t2((n + 1)(c + k1 + 1) + n)]

The vertex labeling g2 is a bijective function g2 : V (G)∪E(G) → {1, 2, . . . , pG+qG}. The
total edge-weights of G = Sn B H under the labeling g2, for k = 1, 2, . . . , n, constitute
the following sets:

W 2
g2

= w1
g2

+ w2
g2

+ (n + 1)(c + 1) + k + w3
g2

= n + 1 + k + w2
k2

+ (n + 1)(c + 1) + k + w3
g2

= C + [c1 + c2
2 + t1 + t22 + 2]k; 1 ≤ k ≤ n

with C = n + 1 + (n + 1)(c2
1− c1) + c1(n + 1) + 2c1(n + 1) + c2 + c2

2n + 2c2((n + 1)(c1 +
1)) + (n + 1)(t12 − t1) + t1(n + 1) + 2t1((n + 1)(c + 1) + n) + t2 + t2

2n
+2t2

2((n+1)(c+ t1 +1)+n). It is easy that the set of total edge-weights W2g2
consists

of an arithmetic sequence of the smallest value a when the edge weights at k = 1 and
the difference d = c1 + c2

2 + t1 + t22 + 2. Since the biggest d is attained when d = c2
2 + t22

then, for c = pH and t = qH + n, it gives d ≤ (p2
H+q2

H)(2(n+1)−4)+2nqH

n−1 It concludes the
proof. ¤

Concluding Remarks
We have shown the existence of super antimagic labeling for graph operation G = LBH
where L is a (b, d∗) − EAV labeling. We have found super(a, d)-P2 B H antimagic
labelings for all differences d = d∗ + d∗(dv + de) + 1 where d∗ is the feasible value of
difference in super edge antimagic graph L and dv and de respectively are feasible values
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of differences in the partitions PpL

pH−1,dv
and PpL

qH ,de
. We have not found the result for

disconnected of graph G. Thus, we propose the following open problems.

Open Problem 1. Let L be a subgraph of G and G = s(LBH). Does G admit a super
(a, d)− P2 B H antimagic total labeling for n ≥ 2 and feasible d?
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