This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Journal of Physics: Conference Series

Table of contents

Volume 1008
2018

- Previous issue

Next issue ,

The 1st International Conference of Combinatorics, Graph Theory, and Network Topology 25-26 November 2017, The University of Jember, East Java, Indonesia

View all abstracts

Accepted papers received: 9 April 2018
Published online: 27 April 2018

JOURNAL LINKS
Journal home
Information for organizers
Information for authors
Search for published proceedings
Contact us
Reprint services from Curran Associates

This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Inurnal of Phveirc• Conformenes Soriac

Journal of Physics: Conference Series

$$
\begin{array}{r|l|}
\text { Country } & \text { United Kingdom } \\
\begin{array}{r}
\text { Subject Area and } \\
\text { Category }
\end{array} & \begin{array}{l}
\text { Physics and Astronomy } \\
\text { Physics and Astronomy (miscellaneous) } \\
\text { Publisher }
\end{array} \\
\begin{aligned}
\text { Institute of Physics }
\end{aligned} \\
\text { Publication type } & \text { Journals } \\
\text { ISSN } & 17426588 \\
\text { Coverage } & \text { 2005-ongoing } \\
\text { Scope } & \begin{array}{l}
\text { From 1 January 2010, IOP Publishing"s open access proceedings titles no longer require authors } \\
\text { to sign and submit copyright forms. For the following titles } \cdot \text { Journal of Physics: Conference } \\
\text { Series •1OP Conference Series: Materials Science and Engineering •IOP Conference Series: Earth }
\end{array}
\end{array}
$$

PAPER • OPEN ACCESS

The Construction of $P_{2} \triangleright H$-antimagic graph using smaller edge-antimagic vertex labeling

To cite this article: Rafiantika M. Prihandini et al 2018 J. Phys.: Conf. Ser. 1008012039

Related content

On the local vertex antimagic total coloring of some families tree Desi Febriani Putri, Dafik, Ika Hesti Agustin et al.

- Local Edge Antimagic Coloring of Comb Product of Graphs Ika Hesti Agustin, Moh. Hasan, Dafik et al.

On the local edge antimagicness of m splitting graphs E R Albirri, Dafik, Slamin et al.

View the article online for updates and enhancements.

The Construction of $P_{2} \triangleright H$-antimagic graph using smaller edge-antimagic vertex labeling

Rafiantika M. Prihandini ${ }^{1,4}$, I.H Agustin ${ }^{1,3}$, Dafik ${ }^{1,2}$
${ }^{1}$ CGANT University of Jember, Indonesia
${ }^{2}$ Mathematics Edu. Depart. University of Jember
${ }^{3}$ Mathematics Depart. University of Jember, Indonesia
${ }^{4}$ Elementary School Teacher Edu, University of Jember, Indonesia
E-mail: rafiantikap.fkip@unej.ac.id, ikahestiagustin@gmail.com, d.dafik@unej.ac.id

Abstract

In this paper we use simple and non trivial graph. If there exist a bijective function $g: V(G) \cup E(G) \rightarrow\{1,2, \ldots,|V(G)|+|E(G)|\}$, such that for all subgraphs $P_{2} \triangleright H$ of G isomorphic to H, then graph G is called an $(a, d)-P_{2} \triangleright H$ antimagic total graph. Furthermore, we can consider the total $P_{2} \triangleright H$-weights $W\left(P_{2} \triangleright H\right)=\sum_{v \in V\left(P_{2} \triangleright H\right)} f(v)+\sum_{e \in E\left(P_{2} \triangleright H\right)} f(e)$ which should form an arithmetic sequence $\{a, a+d, a+2 d, \ldots, a+(n-1) d\}$, where a and d are positive integers and n is the number of all subgraphs isomorphic to H. Our paper describes the existence of super $(a, d)-P_{2} \triangleright H$ antimagic total labeling for graph operation of comb product namely of $G=L \triangleright H$, where L is a $\left(b, d^{*}\right)$-edge antimagic vertex labeling graph and H is a connected graph.

1. Introduction

In this paper we consider simple and nontrivial graphs. One of the graph operation is a comb product. Saputro, et.al in [16], defined a comb product of L and H, denoted by $L \triangleright H$. Comb product is a graph obtained by taking one copy of L and $|V(L)|$ copies of H and grafting the i-th copy of H at the vertex o to the i-th vertex of L. Thus, we have $V(L \triangleright H)=\{(a, v) \mid a \in V(L), v \in V(H)\}$ and $(a, v)(b, w) \in E(L \triangleright H)$ whenever $a=b$ and $v w \in E(H)$, or $a b \in E(L)$ and $v=w=o$. Labeling is one to one mapping which maps the set of graph elements into a set of integer. Furthermore, an (a, d)-edgeantimagic vertex labeling is one to one mapping from $g: V(G) \rightarrow\{1,2, \ldots, v\}$ which maps the set of vertices into a set of integer such that the set of edge weights of all edges in G is $\{a, a+d, \ldots, a+(e-1) d\}$, where $a>0$ and $d \geq 0$ are integer set [2]. In this paper we deal with labelings with domain either the set of all vertices and edges.

Suppose $G=L \triangleright H$ and $H \subseteq G$, If there exist a bijective function $g: V(G) \cup E(G) \rightarrow$ $\{1,2, \ldots,|V(G)|+|E(G)|\}$, such that for all subgraphs $P_{2} \triangleright H$ of G isomorphic to H,
then graph G is called an $(a, d)-P_{2} \triangleright H$-antimagic total graph. Furthermore, we can consider the total $P_{2} \triangleright H$-weights $W\left(P_{2} \triangleright H\right)=\sum_{v \in V\left(P_{2} \triangleright H\right)} f(v)+\sum_{e \in E\left(P_{2} \triangleright H\right)} f(e)$ which should form an arithmetic sequence $\{a, a+d, a+2 d, \ldots, a+(n-1) d\}$, where a and d are positive integers and n is the number of all subgraphs isomorphic to H. Dafik et al in [7] proved cycle-super antimagicness of tensor product of two graphs, namely $C_{r} \otimes P_{n}$ for odd $r \geq 3$ any $n \geq 3$. They have showed the tensor product and its disjoint union for any $m \geq 2$, admit a super $(a, d)-C_{2 r}$-antimagic total labeling for some feasible difference $d \in\left\{4 r, 4 r^{2}+2 r, 6 r^{2}\right\}$. Many paper have published, some other relevant results can be found in [1, 11, 12, 10] and [8, 14, 13, 15, 17, 18].

Recently, Dafik et. al in [5] showed the H-super antimagicness of a graph L when each edge of L is replaced by a graph H. They used a special technique, which is called an integer set partition technique, firstly introduced in [3]. They considered, for a connected version of graph and $k=1,2, \ldots, n-1$, a partition $\mathcal{P}_{c, d}^{n}(i, k)$ of the set $\{1,2, \ldots, c n\}$ of n columns with $n \geq 2, c$-rows such that the sum of the numbers in the k th c-rows forms an arithmetic sequence of difference d.

Our paper investigate the existence of super $(a, d)-P_{2} \triangleright H$-antimagic total labeling of $G=L \triangleright H$. We also show connection between $P_{2} \triangleright H$-antimagic total labeling and edge antimagic vertex labeling. Labels of vertices by following the EAVL pattern, furthermore we also found the general formula of feasible difference d of graph $G=L \triangleright H$.

2. A Useful Lemma and Corollary

Let order of graph L, H be respectively $|V(L)|,|V(H)|$ and size $|E(L)|,|E(H)|$ respectively. The graph $G=L \triangleright H$ is a connected graph with $|V(G)|=|V(L)||V(H)|$ and $|E(G)|=|V(L)||E(H)|+|E(L)|$.Thus $|V(G)|=n p_{H}$ and $|E(G)|=n q_{H}+q_{L}$. The following lemma [4] is to define the upper bound of feasible d for $G=L \triangleright H$ to be a super $(a, d)-H$-antimagic total labeling.
Lemma 1. [4] Let G be a simple graph of order p and size q. If G is super $(a, d)-H$ antimagic total labeling then $d \leq \frac{\left(p_{G}-p_{H}\right) p_{H}+\left(q_{G}-q_{H}\right) q_{H}}{n-1}$, for $p_{G}=|V(G)|, q_{G}=|E(G)|$, $p_{H}=|V(H)|, q_{H}=|E(H)|$, and $n=|H|$.
Corollary 1. If the graph $G=L \triangleright H$ admits super (a, d)- H-antimagic total labeling for integer $n \geq 3$, then $d \leq \frac{\left(p_{H}^{2}+q_{H}^{2}\right)\left(2 p_{L}-4\right)+2 q_{H} q_{L}}{q_{L}-1}$
Lemma 2. 6] Let n and m be positive integers. The sum of $\mathcal{P}_{m, c_{1}}^{n}(i, k)=\{(k-1) n+$ $k, \quad 1 \leq i \leq c\}$ and $\mathcal{P}_{m, c_{2}}^{n}(i, k)=\{(k-1) c+i ; \quad 1 \leq i \leq c\}$ form an aritmatic sequence of difference $\left.d_{1}=c, d_{2}=c^{2}\right\}$, respectively.

3. The Results

Lemma 3. Given that $G=L \triangleright H$. If L admits an edge antimagic vertex labeling $(E A V L)$, then the sum of the corresponding partition label graph of H form an arithmetic sequence.

Proof. By an (a, d)-edge-antimagic vertex labeling of a (p, q) graph L we mean a one to one mapping g from $V(L)$ onto $\{1,2, \ldots, p\}$ such that the set of edge weights of all edges in $G,\{g(u)+g(v): u v \in E(G)\}$, is $W=\{a, a+d, a+2 d, \ldots, a+(q-1) d\}$, where $a>0$ and $d \geq 0$. Let $\left\{h_{i} \in V(L) ; 1 \leq i \leq p\right\}$ indicates the order of the label, thus the
arbitrary pairs, h_{i}, will form an arithmetic sequence. Let w be a set of an edge weight obtained by arbitrary sum of pairs h_{i} which $w=\left\{h_{1}+h_{2}, h_{2}+h_{3}, h_{3}+h_{4}, \ldots,\left(h_{1}+\right.\right.$ $\left.\left.h_{2}\right)+\left(q_{L}-1\right) d\right\}=\left\{a, a+d, a+2 d, \ldots, a+\left(q_{L}-1\right) d\right\}$, thus we can have the following corresponding partition:

$$
\begin{aligned}
\text { (i) } \sum_{\mathrm{i}=1}^{\mathrm{c}} \mathcal{P}_{\mathrm{c}, \mathrm{~d}^{*}}^{\mathrm{n}}\left(\mathrm{~h}_{1}\right)+\sum_{\mathrm{i}=1}^{\mathrm{c}} \mathcal{P}_{\mathrm{c}, \mathrm{~d}^{*}}^{\mathrm{n}}\left(\mathrm{~h}_{2}\right) & =\mathcal{C}_{c, d^{*}}^{n}+d^{*} h_{1}+\mathcal{C}_{c, d^{*}}^{n}+d^{*} h_{2} \\
& =\mathcal{C}_{c, d^{*}}^{n}+d^{*} h_{1}+\mathcal{C}_{c, d^{*}}^{n}+d^{*} h_{2} \\
& =2 \mathcal{C}_{c, d^{*}}^{n}+d^{*}\left(h_{1}+h_{2}\right) \\
\text { (ii) } \sum_{\mathrm{i}=1}^{\mathrm{c}} \mathcal{P}_{\mathrm{c}, \mathrm{~d}^{*}}^{\mathrm{n}}\left(\mathrm{~h}_{2}\right)+\sum_{\mathrm{i}=1}^{\mathrm{c}} \mathcal{P}_{\mathrm{c}, \mathrm{~d}^{*}}^{\mathrm{n}}\left(\mathrm{~h}_{3}\right) & =\mathcal{C}_{c, d^{*}}^{n}+d^{*} h_{2}+\mathcal{C}_{c, d^{*}}^{n}+d^{*} h_{3} \\
& =\mathcal{C}_{c, d^{*}}^{n}+d^{*} h_{2}+\mathcal{C}_{c, d^{*}}^{n}+d^{*} h_{3} \\
& =2 \mathcal{C}_{c, d^{*}}^{n}+d^{*}\left(h_{2}+h_{3}\right) \\
\text { (iii) } \sum_{\mathrm{i}=1}^{\mathrm{c}} \mathcal{P}_{\mathrm{c}, \mathrm{~d}^{*}}^{\mathrm{n}}\left(\mathrm{~h}_{3}\right)+\sum_{\mathrm{i}=1}^{\mathrm{c}} \mathcal{P}_{\mathrm{c}, \mathrm{~d}^{*}}^{\mathrm{n}}\left(\mathrm{~h}_{4}\right) & =\mathcal{C}_{c, d^{*}}^{n}+d^{*} h_{3}+\mathcal{C}_{c, d^{*}}^{n}+d^{*} h_{4} \\
& =\mathcal{C}_{c, d^{*}}^{n}+d^{*} h_{3}+\mathcal{C}_{c, d^{*}}^{n}+d^{*} h_{4} \\
& =2 \mathcal{C}_{c, d^{*}}^{n}+d^{*}\left(h_{3}+h_{4}\right)
\end{aligned}
$$

From the above, we can easily see that the sum of corresponding partition, $\mathcal{P}=$ $\left\{2 \mathcal{C}_{c, d^{*}}^{n}+d^{*}(a), 2 \mathcal{C}_{c, d^{*}}^{n}+d^{*}(a+d), 2 \mathcal{C}_{c, d^{*}}^{n}+d^{*}(a+2 d) \ldots, 2 \mathcal{C}_{c, d^{*}}^{n}+d^{*}\left(a+\left(q_{L}-1\right) d\right)\right\}$, form an arithmetic sequence with $b=d d^{*}$.

Theorem 1. Given the any graph H. If L admits $\left(b, d^{*}\right)-E A V L$, then the comb product of the connected graph $G=L \triangleright H$ admits super $(a, d)-P_{2} \triangleright H$ antimagic total labeling with $d=d^{*}+d^{*}\left(d_{v}+d_{e}\right)+1$.

Proof. Let l be a $\left(b, d^{*}\right)-E A V L$ of graph L. The set of all edge weights of the edges of L under the labeling l is:
$\left\{w^{l}(e): e \in E(L)\right\}=\left\{b, b+d^{*}, b+2 d^{*}, \ldots, b+\left(q_{L}-1\right) d^{*}\right\}$ Denote the edges of graph L by the symbols $e_{1}, e_{2}, \ldots, e_{q_{L}}$ such that:
$\left\{w^{l}(e)=b+(k-1) d^{*}\right.$ with $\left.1 \leq k \leq q_{L}\right\}$ Let H be a connected graph, and $G=L \triangleright H$ contains p_{L} subgraphs isomorphic to H, say $H_{1}, H_{2}, \ldots, H_{p_{L}}$ where the subgraphs H_{i} replaces the vertex v_{i} in graph $L, i=1,2, \ldots, p_{L}$. Construct a total labeling $g, g: V(L \triangleright H) \cup E(L \triangleright H) \rightarrow\left\{1,2, \ldots, p_{L} p_{H}+q_{L}+p_{L} q_{H}\right\}$ constitute the following set:

$$
\begin{aligned}
g\left(V_{p_{H}}\right) & =\left\{\mathcal{P}_{p_{H}-1, d_{v}}^{p_{L}}(i, k) \oplus p_{L}\right\} \\
g\left(E_{q_{L}}\right) & =p_{H} p_{L}+j ; 1 \leq k \leq q_{L} \\
g\left(E_{q_{H}}\right) & =\left\{\mathcal{P}_{q_{H}, d_{e}}^{p_{L}}(i, k) \oplus\left[p_{L} p_{H}+q_{L}\right]\right\}
\end{aligned}
$$

where d_{v} depends on $p_{H}-1$ and d_{e} depends on q_{H}. Furthermore the weight of the subgraphs $H_{i}, i=1,2, \ldots, p_{L}$ in the following way:

$$
W=\sum_{v \in V\left(H_{i}\right)} f(v)+\sum_{e \in E\left(H_{i}\right)} f(e)
$$

$$
\begin{aligned}
= & \left(b+(k-1) d^{*}\right)+\left(\sum_{i=1}^{p_{H}-1}\left(\mathcal{P}_{p_{H}-1, d_{v}}^{p_{L}}(k) \oplus p_{L}\right)+\left(p_{H} p_{L}+k\right)+\right. \\
& \left(\sum_{i=1}^{q_{H}}\left(\mathcal{P}_{q_{H}, d_{e}}^{p_{L}}(k) \oplus p_{H} p_{L}+q_{L}\right)\right.
\end{aligned}
$$

Based on Lemma 3 we are obtained

$$
\begin{aligned}
= & {\left[b+(k-1) d^{*}\right]+\left[2 C_{p_{H}-1, d_{v}}^{p_{L}}+d_{v}\left(b+(k-1) d^{*}\right)\right]+\left[p_{H} p_{L}+k\right]+} \\
& {\left[2 C_{q_{H}, d_{e}}^{p_{L}}+d_{e}\left(b+(k-1) d^{*}\right)\right] } \\
= & b-d^{*}+2 C_{p_{H}-1, d_{v}}^{p_{L}}+b d_{v}-d_{v} d_{1}+p_{H} p_{L}+2 C_{q_{H}, d_{e}}^{p_{L}}+b d_{e}-d_{e} d^{*}+ \\
& \left(d^{*}+d^{*}\left(d_{v}+d_{e}\right)+1\right) k
\end{aligned}
$$

From the above, we can easily see that $W=\left\{\left[b-d^{*}+2 C_{p_{H}-1, d_{v}}^{p_{L}}+b d_{v}-d_{v} d_{1}+p_{H} p_{L}+\right.\right.$ $\left.2 C_{q_{H}, d_{e}}^{p_{L}}+b d_{e}-d_{e} d^{*}\right]+d^{*}+d^{*}\left(d_{v}+d_{e}\right)+1,\left[b-d^{*}+2 C_{p_{H}-1, d_{v}}^{p_{L}}+b d_{v}-d_{v} d_{1}+p_{H} p_{L}+\right.$ $\left.2 C_{q_{H}, d_{e}}^{p_{L}}+b d_{e}-d_{e} d^{*}\right]+2\left(d^{*}+d^{*}\left(d_{v}+d_{e}\right)+1\right), \ldots,\left[b-d^{*}+2 C_{p_{H}-1, d_{v}}^{p_{L}}+b d_{v}-d_{v} d_{1}+\right.$ $\left.\left.p_{H} p_{L}+2 C_{q_{H}, d_{e}}^{p_{L}}+b d_{e}-d_{e} d^{*}\right]+k\left(d^{*}+d^{*}\left(d_{v}+d_{e}\right)+1\right)\right\}$ form an arithmetic sequence. It completes the proof

3.1. Special Families of Connected Graph

We have found a general formula for any graph. Now, in this section we describe the existence of super $(a, d)-P_{2} \triangleright H$ antimagicness of some special families namely $G=P_{n} \triangleright H$ and $G=S_{n} \triangleright H$.
Theorem 2. For $n \geq 2$, the graph $G=P_{n} \triangleright H$ admits a super (a,d)- $P_{2} \triangleright H$ antimagic total labeling with $a=n\left(c_{1}^{2}-c_{1}+t_{1}^{2}-t_{1}\right)+3\left(c_{1}+c_{2}^{2}+t_{1}+t_{2}^{2}\right)+2 n c_{1}+\left(c_{2}-c_{2}^{2}\right)+$ $2 c_{2} n\left(c_{1}+1\right)+2 t_{1}(c n+2 n-1)+\left(t_{2}-t_{2}{ }^{2}\right)+2 t_{2}\left(c n+n t_{1}+2 n-1\right)+4$ and feasible $d=2\left(c_{1}+c_{2}^{2}+t_{1}+t_{2}^{2}\right)+3$.

Proof. Graph $G=P_{n} \triangleright H$ has vertex set $V(G)=\left\{z_{k} ; 1 \leq k \leq n\right\} \cup\left\{z_{i, k} ; 1 \leq i \leq\right.$ $c ; 1 \leq k \leq n\}$ and edge set $V(G)=\left\{e_{k} ; 1 \leq k \leq n\right\} \cup\left\{e_{i, k} ; 1 \leq i \leq c ; 1 \leq k \leq n\right\}$. Suppose c and t are two fix positive integers, with $c=p_{H}-1$ and $t=q_{H}$. By Lemma 2 for $i=1,2, \ldots, c$ and $k=1,2, \ldots, n$, we define the vertex and the edge labels as a linear combination of $\mathcal{P}_{c_{1}, c_{1}}^{n}(i, k) ; \mathcal{P}_{c_{2}, c_{2}^{c}}^{n}(i, k)$, written as follows:

$$
\begin{aligned}
g_{1}\left(z_{k}\right) & =\{k ; 1 \leq k \leq n\} \\
g_{1}\left(z_{i, k}\right) & =\left\{\mathcal{P}_{c_{1}, c_{1}}^{n} \oplus n\right\} \cup\left\{\mathcal{P}_{c_{2}, c_{2}^{2}}^{n} \oplus n\left(c_{1}+1\right)\right\} \\
g_{1}\left(e_{k}\right) & =\{n(c+1)+k ; 1 \leq k \leq n-1\} \\
g_{1}\left(e_{l, k}\right) & =\left\{\mathcal{P}_{t_{1}, t_{1}}^{n} \oplus[n(c+1)+(n-1)]\right\} \cup\left\{\mathcal{P}_{t_{2}, t_{2}^{2}}^{n} \oplus\left[n\left(c+1+t_{1}\right)+(n-1)\right]\right\}
\end{aligned}
$$

from the vertex and the edge labels, then it can be determined a function of the total vertex-weight and edge-weight, written as follows:

$$
w_{g_{1}}^{1}=k+k+1=2 k+1
$$

$$
\begin{aligned}
w_{g_{1}}^{2}= & {\left[\sum_{i=1}^{c} \mathcal{P}_{c_{1}, c_{1}}^{n}(i, k) \oplus n c_{1}+\sum_{i=1}^{c} \mathcal{P}_{c_{1}, c_{1}}^{n}(i, k+1) \oplus n c_{1}\right]+\left[\sum_{i=1}^{c} \mathcal{P}_{c_{2}, c_{2}^{2}}^{n}(i, k) \oplus\right.} \\
& \left.n c_{2}\left(c_{1}+1\right)+\sum_{i=1}^{c} \mathcal{P}_{c_{2}, c_{2}^{c}}^{n}(i, k+1) \oplus n c_{2}\left(c_{1}+1\right)\right] \\
= & {\left[\mathcal{P}_{c_{1}, c_{1}}^{n}(k) \oplus n c_{1}+\mathcal{P}_{c_{1}, c_{1}}^{n}(k+1) \oplus n c_{1}\right]+\left[\mathcal{P}_{c_{2}, c_{2}^{2}}^{n}(k) \oplus n c_{2}\left(c_{1}+1\right)+\right.} \\
& \left.\mathcal{P}_{c_{2}, c_{2}^{2}}^{n}(k+1) \oplus n c_{2}\left(c_{1}+1\right)\right] \\
= & \left\{\left[\frac{n}{2}\left(c_{1}^{2}-c_{1}\right)+c_{1} k+n c_{1}\right]+\left[\frac{n}{2}\left(c_{1}^{2}-c_{1}\right)+c_{1} k+c_{1}+n c_{1}\right]\right\}+ \\
& \left\{\left[\frac{c_{2}-c_{2}^{2}}{2}+c_{2}^{2} k+c_{2} n\left(c_{1}+1\right)\right]+\left[\frac{c_{2}-c_{2}^{2}}{2}+c_{2}^{2} k+c_{2}^{2}+c_{2} n\left(c_{1}+1\right)\right]\right\} \\
= & \left\{n\left(c_{1}^{2}-c_{1}\right)+2 c_{1} k+c_{1}+2 n c_{1}\right\}+\left\{\left(c_{2}-c_{2}{ }^{2}\right)+2 c_{2}{ }^{2} k+c_{2}{ }^{2}+\right. \\
& \left.2 c_{2} n\left(c_{1}+1\right)\right\} \\
w_{g_{1}}^{3}= & {\left[\sum_{l=1}^{t} \mathcal{P}_{t_{1}, t_{1}}^{n}(i, k) \oplus r_{1}(c n+2 n-1)+\sum_{l=1}^{t} \mathcal{P}_{t_{1}, t_{1}}^{n}(i, k+1) \oplus t_{1}(c n+2 n-1)\right]+} \\
& {\left[\sum_{l=1}^{t} \mathcal{P}_{t_{2}, t_{2}^{2}}^{n}(i, k) \oplus t_{2}\left(c n+n t_{1}+2 n-1\right)+\sum_{l=1}^{t} \mathcal{P}_{t_{2}, t_{2}^{2}}^{n}(i, k+1) \oplus t_{2}\left(c n+n t_{1}+\right.\right.} \\
& 2 n-1)] \\
& {\left[\mathcal{P}_{t_{1}, t_{1}}^{n}(k) \oplus t_{1}(c n+2 n-1)+\mathcal{P}_{t_{1}, t_{1}}^{n}(k+1) \oplus t_{1}(c n+2 n-1)\right]+\left[\mathcal{P}_{t_{2}, t_{2}^{2}}^{n}(k)\right.} \\
& \left.\oplus t_{2}\left(c n+n t_{1}+2 n-1\right)+\mathcal{P}_{t_{2}, t_{2}^{2}}^{n}(k+1) \oplus t_{2}\left(c n+n t_{1}+2 n-1\right)\right] \\
= & \left\{\left[\frac{n}{2}\left(t_{1}^{2}-t_{1}\right)+t_{1} k+t_{1}(c n+2 n-1)\right]+\left[\frac{n}{2}\left(t_{1}^{2}-t_{1}\right)+t_{1} k+t_{1}+t_{1}(c n+\right.\right. \\
& \left.2 n-1)]\}+\left[\frac{t_{2}-t_{2}^{2}}{2}+t_{2}^{2} k+t_{2}^{2}+t_{2}\left(c n+n t_{1}+2 n-1\right)\right]\right\}\left\{\left[\frac{t_{2}-t_{2}^{2}}{2}+t_{2}^{2} k+\right.\right. \\
& \left.t_{2}\left(c n+n t_{1}+2 n-1\right)\right] \\
= & \left.n\left(t_{1}^{2}-t_{1}\right)+2 t_{1} k+t_{1}+2 t_{1}(c n+2 n-1)\right\}+\left\{\left(t_{2}-t_{2}^{2}\right)+2 t_{2}{ }^{2} k+t_{2}{ }^{2}+\right. \\
& \left.2 t_{2}\left(c n+n t_{1}+2 n-1\right)\right\}
\end{aligned}
$$

The vertex and edge label under the labeling g_{1} is a bijective function $g_{1}: V(G) \cup E(G) \rightarrow$ $\left\{1,2, \ldots, p_{G}+q_{G}\right\}$. The total edge-weights of $G=P_{n} \triangleright H$ under the labeling g_{1}, for $k=1,2, \ldots, n$, constitute the following sets:

$$
\begin{aligned}
W_{g_{1}}^{1} & =w_{g_{1}}^{1}+w_{g_{1}}^{2}+n(c+1)+k+w_{g_{1}}^{3} \\
& =2 k+1+w_{g_{1}}^{2}+n(c+1)+k+w_{g_{1}}^{3} \\
& =C+\left[2\left(c_{1}+c_{2}^{2}+t_{1}+t_{2}^{2}\right)+3\right] k ; 1 \leq k \leq n-1
\end{aligned}
$$

with $C=n\left(c_{1}^{2}-c_{1}\right)+c_{1}+2 n c_{1}+\left(c_{2}-c_{2}^{2}\right)+c_{2}^{2}+2 c_{2} n\left(c_{1}+1\right)+1+n\left(t_{1}{ }^{2}-t_{1}\right)$ $+t_{1}+2 t_{1}(c n+2 n-1)+\left(t_{2}-t_{2}{ }^{2}\right)+t_{2}{ }^{2}+2 t_{2}\left(c n+n t_{1}+2 n-1\right)$. It is easy that the set of total edge-weights $W_{g_{1}}^{1}$ consists of an arithmetic sequence of the smallest value a when the total edge weights at $k=1$ and the feasible difference $d=2\left[c_{1}+c_{2}^{2}+t_{1}+t_{2}^{2}\right]+3$.

Since the biggest d is attained when $d=2\left(c_{2}^{2}+t_{2}^{2}\right)$ then, for $c=p_{H}$ and $t=q_{H}$, it gives $d \leq \frac{\left(p_{H}^{2}+q_{H}^{2}\right)(2 n-4)+2(n-1) q_{H}}{n-2}$. It concludes the proof.

Figure 1. Illustration of graph $G=P_{4} \triangleright S_{7}$

Theorem 3. For $n \geq 1$, the graph $G=S_{n} \triangleright H$ admits a super $(a, d)-P_{2} \triangleright H$ antimagic total labeling with $a=n+2+(n+1)\left(c_{1}^{2}-c_{1}\right)+c_{1}(n+2)+2 c_{1}(n+1)+c_{2}+c_{2}^{2}(n+$ $1)+2 c_{2}\left((n+1)\left(c_{1}+1\right)\right)+(n+1)\left(t_{1}^{2}-t_{1}\right)+t_{1}(n+2)+2 t_{1}((n+1)(c+1)+n)+t_{2}+$ $t_{2}^{2}(n+1)+2 t_{2}^{2}\left((n+1)\left(c+t_{1}+1\right)+n\right)$ feasible $d=c_{1}+c_{2}^{2}+t_{1}+t_{2}^{2}+2$.

Proof. Graph $G=S_{n} \triangleright H$ has vertex set $V(G)=\{x\} \cup\left\{z_{k} ; 1 \leq k \leq n\right\} \cup\left\{z_{i, k} ; 1 \leq\right.$ $i \leq c ; 1 \leq j \leq n\}$ and edge set $V(G)=\left\{e_{k} ; 1 \leq k \leq n\right\} \cup\left\{e_{l, k} ; 1 \leq l \leq t ; 1 \leq k \leq n\right\}$. Let c and t be positive integers, with $c=p_{H}-1$ and $t=q_{H}$. For $i=1,2, \ldots, c$ and $k=1,2, \ldots, n$, by Lemma $2,3,4$ and 5 we define the vertex and the edge labels as a linear combination of $\mathcal{P}_{c_{1}, c_{1}}^{n}(i, k)$ and $\mathcal{P}_{c_{2}, c_{2}^{2}}^{n}(i, k)$ as follows:

$$
\begin{aligned}
g_{2}(x) & =\{n+1\} \\
g_{2}\left(z_{k}\right) & =\{k ; 1 \leq k \leq n\} \\
g_{2}\left(x_{i, k}\right) & =\left\{\mathcal{P}_{c_{1}, c_{1}}^{n} \oplus(n+1)\right\} \cup\left\{\mathcal{P}_{c_{2}, c_{2}^{2}}^{n} \oplus(n+1)\left(c_{1}+1\right)\right\} \\
g_{2}\left(e_{k}\right) & =\{(n+1)(c+1)+k ; 1 \leq k \leq n\} \\
g_{2}\left(e_{l, k}\right) & =\left\{\mathcal{P}_{t_{1}, t_{1}}^{n} \oplus[(n+1)(c+1)+n]\right\} \cup\left\{\mathcal{P}_{t_{2}, t_{2}^{2}}^{n} \oplus\left[(n+1)\left(c+t_{1}+1\right)+n\right]\right\}
\end{aligned}
$$

then can be determined a function of the total vertex-weight and edge-weight

Figure 2. Illustration of graph $G=S_{3} \triangleright S_{7}$

$$
\begin{aligned}
w_{g_{2}}^{1}= & n+1+k \\
w_{g_{2}}^{2}= & {\left[\sum_{i=1}^{c} \mathcal{P}_{c_{1}, c_{1}}^{n}(i, k) \oplus c_{1}(n+1)+\sum_{i=1}^{c} \mathcal{P}_{c_{1}, c_{1}}^{n}(i, n+1) \oplus c_{1}(n+1)\right]+} \\
& {\left[\sum_{i=1}^{c} \mathcal{P}_{c_{2}, c_{2}^{2}}^{n}(i, k) \oplus c_{2}\left((n+1)\left(c_{1}+1\right)\right)+\sum_{i=1}^{c} \mathcal{P}_{c_{2}, c_{2}^{2}}^{n}(i, n+1)\right.} \\
& \left.\oplus c_{2}\left((n+1)\left(c_{1}+1\right)\right)\right] \\
= & {\left[\mathcal{P}_{c_{1}, c_{1}}^{n}(k) \oplus c_{1}(n+1)+\mathcal{P}_{c_{1}, c_{1}}^{n}(n+1) \oplus c_{1}(n+1)\right]+\left[\mathcal{P}_{c_{2}, c_{2}^{2}}^{n}(k)\right.} \\
& \left.\oplus c_{2}\left((n+1)\left(c_{1}+1\right)\right)+\mathcal{P}_{c_{2}, c_{2}^{2}}^{n}(n+1) \oplus c_{2}\left((n+1)\left(c_{1}+1\right)\right)\right] \\
= & \left\{\left[\frac{n+1}{2}\left(c_{1}^{2}-c_{1}\right)+c_{1} k+c_{1}(n+1)\right]+\left[\frac{n+1}{2}\left(c_{1}^{2}-c_{1}\right)+2 c_{1}(n+1)\right]\right. \\
& +\left[\frac{c_{2}-c_{2}^{2}}{2}+c_{2}^{2} k+c_{2}^{2}+c_{2}\left((n+1)\left(c_{1}+1\right)\right)\right]+\left[\frac{c_{2}-c_{2}^{2}}{2}+c_{2}^{2}(n+1)\right. \\
& \left.\left.+c_{2}^{2}+c_{2}\left((n+1)\left(c_{1}+1\right)\right)\right]\right\} \\
= & {\left[(n+1)\left(c_{1}^{2}-c_{1}\right)+c_{1}(n+k+1)+2 c_{1}(n+1)\right]+\left[c_{2}+c_{2}^{2}(n+k)\right.} \\
& \left.+2 c_{2}\left((n+1)\left(c_{1}+1\right)\right)\right] \\
w_{g_{2}}^{3}= & {\left[\sum_{l=1}^{t} \mathcal{P}_{t_{1}, t_{1}}^{n}(i, k) \oplus t_{1}((n+1)(c+1)+n)+\sum_{l=1}^{t} \mathcal{P}_{t_{1}, t_{1}}^{n}(i, n+1)\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\oplus t_{1}((n+1)(c+1)+n)\right]+\left[\sum_{l=1}^{t} \mathcal{P}_{t_{2}, t_{2}^{2}}^{n}(i, k) \oplus t_{2}\left(n\left(c+t_{1}+1\right)+1+n\right)\right. \\
& \left.+\sum_{l=1}^{t} \mathcal{P}_{t_{2}, t_{2}^{2}}^{n}(i, n+1) \oplus t_{2}\left(n\left(c+t_{1}+1\right)+1+n\right)\right] \\
= & {\left[\mathcal{P}_{t_{1}, t_{1}}^{n}(k) \oplus t_{1}((n+1)(c+1)+n)+\mathcal{P}_{t_{1}, t_{1}}^{n}(n+1) \oplus t_{1}((n+1)(c+1)+n)\right] } \\
& +\left[\mathcal{P}_{t_{2}, t_{2}}^{n}(k) \oplus t_{2}\left((n+1)\left(c+t_{1}+1\right)+n\right)+\mathcal{P}_{t_{2}, t_{2}^{2}}^{n}(n+1)\right. \\
& \left.\left.\oplus t_{2}(n+1)\left(c+t_{1}+1\right)+n\right)\right] \\
= & \left\{\left[\frac{n+1}{2}\left(t_{1}^{2}-t_{1}\right)+t_{1} k+t_{1}((n+1)(c+1)+n)\right]+\left[\frac{n+1}{2}\left(t_{1}^{2}-t_{1}\right)\right.\right. \\
& \left.+t_{1}(n+1)+t_{1}((n+1)(c+1)+n)\right]+\left[\frac{t_{2}-t_{2}^{2}}{2}+t_{2}^{2} k+t_{2}^{2}+\right. \\
& \left.t_{2}\left((n+1)\left(c+t_{1}+1\right)+n\right)\right]+\left[\frac{t_{2}-t_{2}^{2}}{2}+t_{2}^{2}(n+1)+t_{2}^{2}+\right. \\
& \left.\left.t_{2}\left((n+1)\left(c+t_{1}+1\right)+n\right)\right]\right\} \\
= & {\left[(n+1)\left(t_{1}^{2}-t_{1}\right)+t_{1}(n+k+1)+2 t_{1}((n+1)(c+1)+n)\right]+\left[t_{2}+t_{2}^{2}(n+k)\right.} \\
& \left.+2 t_{2}\left((n+1)\left(c+k_{1}+1\right)+n\right)\right]
\end{aligned}
$$

The vertex labeling g_{2} is a bijective function $g_{2}: V(G) \cup E(G) \rightarrow\left\{1,2, \ldots, p_{G}+q_{G}\right\}$. The total edge-weights of $G=S_{n} \triangleright H$ under the labeling g_{2}, for $k=1,2, \ldots, n$, constitute the following sets:

$$
\begin{aligned}
W_{g_{2}}^{2} & =w_{g_{2}}^{1}+w_{g_{2}}^{2}+(n+1)(c+1)+k+w_{g_{2}}^{3} \\
& =n+1+k+w_{k_{2}}^{2}+(n+1)(c+1)+k+w_{g_{2}}^{3} \\
& =C+\left[c_{1}+c_{2}^{2}+t_{1}+t_{2}^{2}+2\right] k ; 1 \leq k \leq n
\end{aligned}
$$

with $C=n+1+(n+1)\left(c_{1}^{2}-c_{1}\right)+c_{1}(n+1)+2 c_{1}(n+1)+c_{2}+c_{2}{ }^{2} n+2 c_{2}\left((n+1)\left(c_{1}+\right.\right.$ 1) $)+(n+1)\left(t_{1}{ }^{2}-t_{1}\right)+t_{1}(n+1)+2 t_{1}((n+1)(c+1)+n)+t_{2}+t_{2}{ }^{2} n$ $+2 t_{2}{ }^{2}\left((n+1)\left(c+t_{1}+1\right)+n\right)$. It is easy that the set of total edge-weights $W_{2 g_{2}}$ consists of an arithmetic sequence of the smallest value a when the edge weights at $k=1$ and the difference $d=c_{1}+c_{2}^{2}+t_{1}+t_{2}^{2}+2$. Since the biggest d is attained when $d=c_{2}^{2}+t_{2}^{2}$ then, for $c=p_{H}$ and $t=q_{H}+n$, it gives $d \leq \frac{\left(p_{H}^{2}+q_{H}^{2}\right)(2(n+1)-4)+2 n q_{H}}{n-1}$ It concludes the proof.

Concluding Remarks

We have shown the existence of super antimagic labeling for graph operation $G=L \triangleright H$ where L is a $\left(b, d^{*}\right)-E A V$ labeling. We have found $\operatorname{super}(a, d)-P_{2} \triangleright H$ antimagic labelings for all differences $d=d^{*}+d^{*}\left(d_{v}+d_{e}\right)+1$ where d^{*} is the feasible value of difference in super edge antimagic graph L and d_{v} and d_{e} respectively are feasible values
of differences in the partitions $\mathcal{P}_{p_{H}-1, d_{v}}^{p_{L}}$ and $\mathcal{P}_{q_{H}, d_{e}}^{p_{L}}$. We have not found the result for disconnected of graph G. Thus, we propose the following open problems.
Open Problem 1. Let L be a subgraph of G and $G=s(L \triangleright H)$. Does G admit a super (a,d)- $P_{2} \triangleright H$ antimagic total labeling for $n \geq 2$ and feasible d ?

Acknowledgement

We gratefully acknowledge the support from DP2M research grant HIKOM-DIKTI and CGANT - University of Jember of year 2017.

References

[1] Baca M, Lin Y and Semanicov-Fenovcikov A 2009 Note on super antimagicness of disconnected graphs International J. Graphs and Comb 61 47-55
[2] Baca M, Lin Y, Miller M and Youssef M Z 2007 Edge-antimagic graphs Discrete Mathematics 307 11 1232-1244
[3] Baca M, Brankovic L, Lascsakova M, Phanalasy O and Semanicova-Fenovciova A 2013 On dantimagic labelings of plane graphs Electronic Journal of Graph Theory and Applications (EJGTA) 11 28-39
[4] Dafik, Purnapraja A K and Hidayat R 2015 Cycle-Super Antimagicness of Connected and Disconnected Tensor Product of Graphs Procedia Computer Science 74 93-99
[5] Dafik, Slamin, Tanna D, Semanicova-Fenovcikova A and Baca M 2017 Constructions of Hantimagic graphs using smaller edge-antimagic graphs Ars Combinatoria 133 233-245
[6] Dafik, Hasan M, Azizah, Y N and Agustin I H 2017 A generalized shackle of any graph H admits a super H-antimagic total labeling In Journal of Physics: Conference Series IOP Publishing 893 1012042
[7] Dafik, Purnapraja A K, Hidayat R 2015 Cycle Super Antimagicness of Connected and Disconnected Tensor Product of Graphs Procedia Computer Science 74 93-99
[8] Dafik and Agustin I H 2016 Super (a, d) - F_{n}-antimagic total labeling for a connected and disconnected amalgamation of fan graphs In AIP Conference Proceedings AIP Publishing 1707 1020003
[9] Gross J L and Yellen J eds 2004 Handbook of graph theory CRC press
[10] Agustin I H, Dafik, Prihandini R M $2018 P_{2} \triangleright H$-super antimagic total labeling of comb product of graph $A K C E$ International Journal of Graphs and Combinatorics In Press
[11] Inayah N, Salman A N M and Simanjuntak R 2009 On (a, d)-H-antimagic coverings of graphs Journal of Combinatorial Mathematics and Combinatorial Computing 71273
[12] Jeyanthi P and Selvagopal P 2010 More classes of H-supermagic Graphs Intern. J. of Algorithms, Computing and Mathematics 31 93-108
[13] Maryati T K, Salman A N M, Baskoro E T, Ryan J and Miller M 2010 On H-supermagic labelings for certain shackles and amalgamations of a connected graph Utilitas Mathematica 83333
[14] Llad A and Moragas J 2007 Cycle-magic graphs Discrete Mathematics 30723 2925-2933
[15] Ngurah A A G, Salman A N M and Susilowati L 2010 H-supermagic labelings of graphs Discrete Mathematics 3108 1293-1300
[16] Saputro S W, Mardiana N and Purwasi I A 2013 The metric dimension of comb product graph In Graph Theory Conference in Honor of Egawas 60th Birthday September 10
[17] Rizvi S T R, Ali K and Hussain M 2014 Cycle-supermagic labelings of the disjoint union of graphs Utilitas Mathematica
[18] Roswitha M and Baskoro ET 2012, May H-magic covering on some classes of graphs In AIP Conference Proceedings 14501 135-138
[19] Simanjuntak R, Bertault F and Miller M 2000 Two new (a, d)-antimagic graph labelings In Proc. of Eleventh Australasian Workshop on Combinatorial Algorithms 11 179-189

