SISTER UNIVERSITAS JEM × 10P pdf × 10P Journal of Physics: Confer ×	× D – alhaim
← → C O iopscience.iop.org/issue/1742-6596/1008/1 Digital Repository Universitas Jember	🖈 🔤 🗣 🞯 🧐 🗄
👖 Apl 👙 Administrator M Inbox (17) - rafiantik	Sesuaikan dan kontrol Google Chrom
This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.	•
IOPSCIENCE Journals - Books Publishing Support Login - Search IOPscience content Search	n Article Lookup 🕶
Journal of Physics: Conference Series	
Table of contents	AL LINKS
Inform	nation for organizers
Volume 1008	nation for authors
2018 Search	h for published proceedings
Previous Issue Next Issue Contain	ct us
The 1st International Conference of Combinatorics, Graph Theory, and Network Topology 25–26 November 2017, The University of Jember, East Java, Indonesia Associ	it services from Curran iates
View all abstracts	
Accepted papers received: 9 April 2018 Published online: 27 April 2018	Leybold
🚺 rafiantika.pdf	Tampilkan semua
	へ 空 (x IND 14.13 見)

SISTER UNIVERSITAS JEM × 10P pdf × 10P Journal of Physics: Confe ×	allination	- 0	×	
← → C iopscience.iop.org/issue/1742-6596/1008/1 Digital Repository Universitas Jember	☆ 🔤 💁	© 🧿	0 :	
Apl 😂 Administrator M Inbox (17) - rafiantik	Sesuaikan dan ko	ontrol Googl	le Chrome	Ĩ
This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.		8	Í	
IOPSCIENCE Journals - Books Publishing Support Login - Search IOPscience content Search	Article Looku	p -		
Inumal of Physics: Conference Series ☐ SISTER UNIVERSITAS JEM × 10P pdf × 500 Journal of Physics: Confer ×	cibadia	- 0	×	
 ← → C Aman https://www.scimagojr.com/journalsearch.php?q=130053&tip=sid&clean=0 Apl I Administrator M Inbox (17) - rafiantik 	☆ 🔤 🔤	© ()	0 :	

Journal of Physics: Conference Series 8

Country	United Kingdom	52
Subject Area and Category	Physics and Astronomy Physics and Astronomy (miscellaneous)	JZ
Publisher	Institute of Physics	H Index
Publication type	Journals	
ISSN	17426588	
Coverage	2005-ongoing	
Scope	From 1 January 2010, IOP Publishing"s open access proceeding to sign and submit copyright forms. For the following titles •Jou Series •IOP Conference Series: Materials Science and Engineeri	gs titles no longer require authors Irnal of Physics: Conference ng •IOP Conference Series: Earth

Journal of Physics: Conference Series

PAPER • OPEN ACCESS

The Construction of $P_2 \triangleright H$ -antimagic graph using smaller edge-antimagic vertex labeling

To cite this article: Rafiantika M. Prihandini et al 2018 J. Phys.: Conf. Ser. 1008 012039

View the article online for updates and enhancements.

Related content

- <u>On the local vertex antimagic total coloring</u> of some families tree Desi Febriani Putri, Dafik, Ika Hesti Agustin et al.
- <u>Local Edge Antimagic Coloring of Comb</u> <u>Product of Graphs</u> Ika Hesti Agustin, Moh. Hasan, Dafik et al.
- On the local edge antimagicness of msplitting graphs
- E R Albirri, Dafik, Slamin et al.

ICCGANT

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012039 doi:10.1088/1742-6596/1008/1/012039

The Construction of $P_2 \triangleright H$ -antimagic graph using smaller edge-antimagic vertex labeling

Rafiantika M. Prihandini^{1,4}, I.H Agustin^{1,3}, Dafik^{1,2}

¹CGANT University of Jember, Indonesia

²Mathematics Edu. Depart. University of Jember

³Mathematics Depart. University of Jember, Indonesia

⁴Elementary School Teacher Edu, University of Jember, Indonesia

E-mail: rafiantikap.fkip@unej.ac.id, ikahestiagustin@gmail.com, d.dafik@unej.ac.id

Abstract. In this paper we use simple and non trivial graph. If there exist a bijective function $g: V(G) \cup E(G) \rightarrow \{1, 2, \dots, |V(G)| + |E(G)|\}$, such that for all subgraphs $P_2 \triangleright H$ of G isomorphic to H, then graph G is called an (a, d)- $P_2 \triangleright H$ antimagic total graph. Furthermore, we can consider the total $P_2 \triangleright H$ -weights
$$\begin{split} W(P_2 \rhd H) &= \sum_{v \in V(P_2 \rhd H)} f(v) + \sum_{e \in E(P_2 \rhd H)} f(e) \text{ which should form an arithmetic sequence } \{a, a + d, a + 2d, ..., a + (n-1)d\}, \text{ where } a \text{ and } d \text{ are positive integers and } d \text{ are positive integer$$
n is the number of all subgraphs isomorphic to H. Our paper describes the existence of super (a, d)- $P_2 > H$ antimagic total labeling for graph operation of comb product namely of $G = L \triangleright H$, where L is a (b, d^*) -edge antimagic vertex labeling graph and H is a connected graph.

1. Introduction

In this paper we consider simple and nontrivial graphs. One of the graph operation is a comb product. Saputro, et.al in [16], defined a comb product of L and H, denoted by $L \triangleright H$. Comb product is a graph obtained by taking one copy of L and |V(L)| copies of H and grafting the *i*-th copy of H at the vertex o to the *i*-th vertex of L. Thus, we have $V(L \triangleright H) = \{(a, v) | a \in V(L), v \in V(H)\}$ and $(a, v)(b, w) \in E(L \triangleright H)$ whenever a = b and $vw \in E(H)$, or $ab \in E(L)$ and v = w = o. Labeling is one to one mapping which maps the set of graph elements into a set of integer. Furthermore, an (a, d)-edgeantimagic vertex labeling is one to one mapping from $g: V(G) \to \{1, 2, \ldots, v\}$ which maps the set of vertices into a set of integer such that the set of edge weights of all edges in G is $\{a, a + d, \ldots, a + (e - 1)d\}$, where a > 0 and $d \ge 0$ are integer set [2]. In this paper we deal with labelings with domain either the set of all vertices and edges.

Suppose $G = L \triangleright H$ and $H \subseteq G$, If there exist a bijective function $g: V(G) \cup E(G) \rightarrow G$ $\{1, 2, \ldots, |V(G)| + |E(G)|\}$, such that for all subgraphs $P_2 \triangleright H$ of G isomorphic to H,

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution Ð of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

ICCGANT

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012039 doi:10.1088/1742-6596/1008/1/012039

then graph G is called an (a, d)- $P_2 > H$ -antimagic total graph. Furthermore, we can consider the total $P_2 > H$ -weights $W(P_2 > H) = \sum_{v \in V(P_2 > H)} f(v) + \sum_{e \in E(P_2 > H)} f(e)$ which should form an arithmetic sequence $\{a, a + d, a + 2d, ..., a + (n - 1)d\}$, where a and d are positive integers and n is the number of all subgraphs isomorphic to H. Dafik *et al* in [7] proved cycle-super antimagicness of tensor product of two graphs, namely $C_r \otimes P_n$ for odd $r \geq 3$ any $n \geq 3$. They have showed the tensor product and its disjoint union for any $m \geq 2$, admit a super $(a, d) - C_{2r}$ -antimagic total labeling for some feasible difference $d \in \{4r, 4r^2 + 2r, 6r^2\}$. Many paper have published, some other relevant results can be found in [1], [11, [12, 10] and [8], [14, [13, [15], [17, [18].

Recently, Dafik *et.* al in [5] showed the *H*-super antimagicness of a graph *L* when each edge of *L* is replaced by a graph *H*. They used a special technique, which is called an *integer set partition technique*, firstly introduced in [3]. They considered, for a connected version of graph and k = 1, 2, ..., n - 1, a partition $\mathcal{P}_{c,d}^n(i, k)$ of the set $\{1, 2, ..., cn\}$ of *n* columns with $n \geq 2$, *c*-rows such that the sum of the numbers in the *k*th *c*-rows forms an arithmetic sequence of difference *d*.

Our paper investigate the existence of super (a, d)- $P_2 \triangleright H$ -antimagic total labeling of $G = L \triangleright H$. We also show connection between $P_2 \triangleright H$ -antimagic total labeling and edge antimagic vertex labeling. Labels of vertices by following the EAVL pattern, furthermore we also found the general formula of feasible difference d of graph $G = L \triangleright H$.

2. A Useful Lemma and Corollary

Let order of graph L, H be respectively |V(L)|, |V(H)| and size |E(L)|, |E(H)|respectively. The graph $G = L \triangleright H$ is a connected graph with |V(G)| = |V(L)||V(H)|and |E(G)| = |V(L)||E(H)| + |E(L)|. Thus $|V(G)| = np_H$ and $|E(G)| = nq_H + q_L$. The following lemma [4] is to define the upper bound of feasible d for $G = L \triangleright H$ to be a super (a, d)-H-antimagic total labeling.

Lemma 1. [4] Let G be a simple graph of order p and size q. If G is super (a, d)-Hantimagic total labeling then $d \leq \frac{(p_G - p_H)p_H + (q_G - q_H)q_H}{n-1}$, for $p_G = |V(G)|$, $q_G = |E(G)|$, $p_H = |V(H)|$, $q_H = |E(H)|$, and n = |H|.

Corollary 1. If the graph $G = L \triangleright H$ admits super (a, d)-H-antimagic total labeling for integer $n \ge 3$, then $d \le \frac{(p_H^2 + q_H^2)(2p_L - 4) + 2q_H q_L}{q_L - 1}$

Lemma 2. [6] Let n and m be positive integers. The sum of $\mathcal{P}_{m,c_1}^n(i,k) = \{(k-1)n + k, 1 \leq i \leq c\}$ and $\mathcal{P}_{m,c_2}^n(i,k) = \{(k-1)c+i; 1 \leq i \leq c\}$ form an aritmatic sequence of difference $d_1 = c, d_2 = c^2\}$, respectively.

3. The Results

Lemma 3. Given that $G = L \triangleright H$. If L admits an edge antimagic vertex labeling (EAVL), then the sum of the corresponding partition label graph of H form an arithmetic sequence.

Proof. By an (a, d)-edge-antimagic vertex labeling of a (p, q) graph L we mean a one to one mapping g from V(L) onto $\{1, 2, \ldots, p\}$ such that the set of edge weights of all edges in G, $\{g(u) + g(v) : uv \in E(G)\}$, is $W = \{a, a + d, a + 2d, \ldots, a + (q - 1)d\}$, where a > 0 and $d \ge 0$. Let $\{h_i \in V(L); 1 \le i \le p\}$ indicates the order of the label, thus the

ICCGANT

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012039 doi:10.1088/1742-6596/1008/1/012039

arbitrary pairs, h_i , will form an arithmetic sequence. Let w be a set of an edge weight obtained by arbitrary sum of pairs h_i which $w = \{h_1 + h_2, h_2 + h_3, h_3 + h_4, \dots, (h_1 + h_2) + (q_L - 1)d\} = \{a, a + d, a + 2d, \dots, a + (q_L - 1)d\}$, thus we can have the following corresponding partition:

$$(i) \sum_{i=1}^{c} \mathcal{P}_{c,d^{*}}^{n}(h_{1}) + \sum_{i=1}^{c} \mathcal{P}_{c,d^{*}}^{n}(h_{2}) = \mathcal{C}_{c,d^{*}}^{n} + d^{*}h_{1} + \mathcal{C}_{c,d^{*}}^{n} + d^{*}h_{2}$$

$$= \mathcal{C}_{c,d^{*}}^{n} + d^{*}h_{1} + \mathcal{C}_{c,d^{*}}^{n} + d^{*}h_{2}$$

$$= 2\mathcal{C}_{c,d^{*}}^{n} + d^{*}h_{1} + \mathcal{C}_{c,d^{*}}^{n} + d^{*}h_{2}$$

$$= 2\mathcal{C}_{c,d^{*}}^{n} + d^{*}(h_{1} + h_{2})$$

$$(ii) \sum_{i=1}^{c} \mathcal{P}_{c,d^{*}}^{n}(h_{2}) + \sum_{i=1}^{c} \mathcal{P}_{c,d^{*}}^{n}(h_{3}) = \mathcal{C}_{c,d^{*}}^{n} + d^{*}h_{2} + \mathcal{C}_{c,d^{*}}^{n} + d^{*}h_{3}$$

$$= \mathcal{C}_{c,d^{*}}^{n} + d^{*}h_{2} + \mathcal{C}_{c,d^{*}}^{n} + d^{*}h_{3}$$

$$= 2\mathcal{C}_{c,d^{*}}^{n} + d^{*}h_{2} + \mathcal{C}_{c,d^{*}}^{n} + d^{*}h_{3}$$

$$= 2\mathcal{C}_{c,d^{*}}^{n} + d^{*}(h_{2} + h_{3})$$

$$(iii) \sum_{i=1}^{c} \mathcal{P}_{c,d^{*}}^{n}(h_{3}) + \sum_{i=1}^{c} \mathcal{P}_{c,d^{*}}^{n}(h_{4}) = \mathcal{C}_{c,d^{*}}^{n} + d^{*}h_{3} + \mathcal{C}_{c,d^{*}}^{n} + d^{*}h_{4}$$

$$= \mathcal{C}_{c,d^{*}}^{n} + d^{*}h_{3} + \mathcal{C}_{c,d^{*}}^{n} + d^{*}h_{4}$$

$$= \mathcal{C}_{c,d^{*}}^{n} + d^{*}h_{3} + \mathcal{C}_{c,d^{*}}^{n} + d^{*}h_{4}$$

From the above, we can easily see that the sum of corresponding partition, $\mathcal{P} = \{2\mathcal{C}_{c,d^*}^n + d^*(a), 2\mathcal{C}_{c,d^*}^n + d^*(a+d), 2\mathcal{C}_{c,d^*}^n + d^*(a+2d) \dots, 2\mathcal{C}_{c,d^*}^n + d^*(a+(q_L-1)d)\}$, form an arithmetic sequence with $b = dd^*$.

Theorem 1. Given the any graph H. If L admits $(b, d^*) - EAVL$, then the comb product of the connected graph $G = L \triangleright H$ admits super $(a, d) - P_2 \triangleright H$ antimagic total labeling with $d = d^* + d^*(d_v + d_e) + 1$.

Proof. Let l be a $(b, d^*) - EAVL$ of graph L. The set of all edge weights of the edges of L under the labeling l is:

 $\{w^l(e): e \in E(L)\} = \{b, b + d^*, b + 2d^*, \dots, b + (q_L - 1)d^*\}$ Denote the edges of graph L by the symbols e_1, e_2, \dots, e_{q_L} such that:

 $\{w^l(e) = b + (k-1)d^* \text{ with } 1 \le k \le q_L\}$ Let H be a connected graph, and $G = L \triangleright H$ contains p_L subgraphs isomorphic to H, say $H_1, H_2, \ldots, H_{p_L}$ where the subgraphs H_i replaces the vertex v_i in graph L, $i = 1, 2, \ldots, p_L$. Construct a total labeling $g, g: V(L \triangleright H) \cup E(L \triangleright H) \rightarrow \{1, 2, \ldots, p_L p_H + q_L + p_L q_H\}$ constitute the following set:

$$g(V_{p_H}) = \{ \mathcal{P}_{p_H-1,d_v}^{p_L}(i,k) \oplus p_L \} \\ g(E_{q_L}) = p_H p_L + j; 1 \le k \le q_L \\ g(E_{q_H}) = \{ \mathcal{P}_{q_H,d_e}^{p_L}(i,k) \oplus [p_L p_H + q_L] \}$$

where d_v depends on $p_H - 1$ and d_e depends on q_H . Furthermore the weight of the subgraphs H_i , $i = 1, 2, ..., p_L$ in the following way:

$$W = \sum_{v \in V(H_i)} f(v) + \sum_{e \in E(H_i)} f(e)$$

ICCGANT

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012039 doi:10.1088/1742-6596/1008/1/012039

$$= (b + (k - 1)d^*) + (\sum_{i=1}^{p_H - 1} (\mathcal{P}_{p_H - 1, d_v}^{p_L}(k) \oplus p_L) + (p_H p_L + k) + (\sum_{i=1}^{q_H} (\mathcal{P}_{q_H, d_e}^{p_L}(k) \oplus p_H p_L + q_L)$$

Based on Lemma 3 we are obtained

$$= [b + (k - 1)d^{*}] + [2C_{p_{H}-1,d_{v}}^{p_{L}} + d_{v}(b + (k - 1)d^{*})] + [p_{H}p_{L} + k] + [2C_{q_{H},d_{e}}^{p_{L}} + d_{e}(b + (k - 1)d^{*})]$$

$$= b - d^{*} + 2C_{p_{H}-1,d_{v}}^{p_{L}} + bd_{v} - d_{v}d_{1} + p_{H}p_{L} + 2C_{q_{H},d_{e}}^{p_{L}} + bd_{e} - d_{e}d^{*} + (d^{*} + d^{*}(d_{v} + d_{e}) + 1)k$$

From the above, we can easily see that $W = \{[b - d^* + 2C_{p_H-1,d_v}^{p_L} + bd_v - d_vd_1 + p_Hp_L + 2C_{q_H,d_e}^{p_L} + bd_e - d_ed^*] + d^* + d^*(d_v + d_e) + 1, [b - d^* + 2C_{p_H-1,d_v}^{p_L} + bd_v - d_vd_1 + p_Hp_L + 2C_{q_H,d_e}^{p_L} + bd_e - d_ed^*] + 2(d^* + d^*(d_v + d_e) + 1), \dots, [b - d^* + 2C_{p_H-1,d_v}^{p_L} + bd_v - d_vd_1 + p_Hp_L + 2C_{q_H,d_e}^{p_L} + bd_e - d_ed^*] + k(d^* + d^*(d_v + d_e) + 1)\}$ form an arithmetic sequence. It completes the proof

3.1. Special Families of Connected Graph

We have found a general formula for any graph. Now, in this section we describe the existence of super $(a, d) - P_2 \triangleright H$ antimagicness of some special families namely $G = P_n \triangleright H$ and $G = S_n \triangleright H$.

Theorem 2. For $n \ge 2$, the graph $G = P_n \triangleright H$ admits a super $(a, d) - P_2 \triangleright H$ antimagic total labeling with $a = n(c_1^2 - c_1 + t_1^2 - t_1) + 3(c_1 + c_2^2 + t_1 + t_2^2) + 2nc_1 + (c_2 - c_2^2) + 2c_2n(c_1 + 1) + 2t_1(cn + 2n - 1) + (t_2 - t_2^2) + 2t_2(cn + nt_1 + 2n - 1) + 4$ and feasible $d = 2(c_1 + c_2^2 + t_1 + t_2^2) + 3$.

Proof. Graph $G = P_n \triangleright H$ has vertex set $V(G) = \{z_k; 1 \le k \le n\} \cup \{z_{i,k}; 1 \le i \le c; 1 \le k \le n\}$ and edge set $V(G) = \{e_k; 1 \le k \le n\} \cup \{e_{i,k}; 1 \le i \le c; 1 \le k \le n\}$. Suppose c and t are two fix positive integers, with $c = p_H - 1$ and $t = q_H$. By Lemma 2 for $i = 1, 2, \ldots, c$ and $k = 1, 2, \ldots, n$, we define the vertex and the edge labels as a linear combination of $\mathcal{P}_{c_1,c_1}^n(i,k); \mathcal{P}_{c_2,c_2}^n(i,k)$, written as follows:

$$g_{1}(z_{k}) = \{k; 1 \le k \le n\}$$

$$g_{1}(z_{i,k}) = \{\mathcal{P}_{c_{1},c_{1}}^{n} \oplus n\} \cup \{\mathcal{P}_{c_{2},c_{2}}^{n} \oplus n(c_{1}+1)\}$$

$$g_{1}(e_{k}) = \{n(c+1)+k; 1 \le k \le n-1\}$$

$$g_{1}(e_{l,k}) = \{\mathcal{P}_{t_{1},t_{1}}^{n} \oplus [n(c+1)+(n-1)]\} \cup \{\mathcal{P}_{t_{2},t_{2}}^{n} \oplus [n(c+1+t_{1})+(n-1)]\}$$

from the vertex and the edge labels, then it can be determined a function of the total vertex-weight and edge-weight, written as follows:

$$w_{g_1}^1 = k+k+1 = 2k+1$$

ICCGANT

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012039 doi:10.1088/1742-6596/1008/1/012039

$$\begin{split} w_{g_1}^2 &= [\sum_{i=1}^c \mathcal{P}_{c_1,c_1}^n(i,k) \oplus nc_1 + \sum_{i=1}^c \mathcal{P}_{c_1,c_1}^n(i,k+1) \oplus nc_1] + [\sum_{i=1}^c \mathcal{P}_{c_2,c_2}^n(i,k) \oplus \\ &nc_2(c_1+1) + \sum_{i=1}^c \mathcal{P}_{c_1,c_2}^n(k+1) \oplus nc_2(c_1+1)] \\ &= [\mathcal{P}_{c_1,c_1}^n(k) \oplus nc_1 + \mathcal{P}_{c_1,c_1}^n(k+1) \oplus nc_1] + [\mathcal{P}_{c_2,c_2}^n(k) \oplus nc_2(c_1+1) + \\ &\mathcal{P}_{c_2,c_2}^n(k+1) \oplus nc_2(c_1+1)] \\ &= \{[\frac{n}{2}(c_1^2-c_1) + c_1k + nc_1] + [\frac{n}{2}(c_1^2-c_1) + c_1k + c_1 + nc_1]\} + \\ &\{[\frac{c_2-c_2^2}{2} + c_2^2k + c_2n(c_1+1)] + [\frac{c_2-c_2^2}{2} + c_2^2k + c_2^2 + c_2n(c_1+1)]\} \\ &= \{n(c_1^2-c_1) + 2c_1k + c_1 + 2nc_1\} + \{(c_2-c_2^2) + 2c_2^2k + c_2^2 + 2c_2n(c_1+1)]\} \\ &= \{n(c_1^2-c_1) + 2c_1k + c_1 + 2nc_1\} + \{(c_2-c_2^2) + 2c_2^2k + c_2^2 + 2c_2n(c_1+1)]\} \\ &= \{n(c_1^2-c_1) + 2c_1k + c_1 + 2n-1\} + \sum_{l=1}^t \mathcal{P}_{t_1,t_1}^n(i,k+1) \oplus t_1(cn+2n-1)] + \\ &[\sum_{l=1}^t \mathcal{P}_{t_2,t_2}^n(i,k) \oplus t_2(cn+nt_1+2n-1)] + \sum_{l=1}^t \mathcal{P}_{t_2,t_2}^n(i,k+1) \oplus t_2(cn+nt_1+2n-1)] \\ &= [\mathcal{P}_{t_1,t_1}^n(k) \oplus t_1(cn+2n-1) + \mathcal{P}_{t_2,t_2}^n(k+1) \oplus t_2(cn+nt_1+2n-1)] \\ &= \{[\frac{n}{2}(t_1^2-t_1) + t_1k + t_1(cn+2n-1)] + [\frac{n}{2}(t_1^2-t_1) + t_1k + t_1 + t_1(cn+2n-1)]\} \\ &= \{[\frac{n}{2}(t_1^2-t_1) + 2t_1k + t_1 + 2t_1(cn+2n-1)]\} + [(t_2-t_2^2) + 2t_2^2k + t_2^2 + t_2^2k + t_2^2 + t_2(cn+nt_1+2n-1)]\} \\ &= \{n(t_1^2-t_1) + 2t_1k + t_1 + 2t_1(cn+2n-1)\} + \{(t_2-t_2^2) + 2t_2^2k + t_2^2 + t_2^2k + t_2^2(cn+nt_1+2n-1)\}\} \\ &= \{n(t_1^2-t_1) + 2t_1k + t_1 + 2t_1(cn+2n-1)\} + \{n(t_1^2-t_2^2) + 2t_2^2k + t_2^2 + t_2^2k + t_2^2 + t_2^2k +$$

The vertex and edge label under the labeling g_1 is a bijective function $g_1: V(G) \cup E(G) \rightarrow \{1, 2, \ldots, p_G + q_G\}$. The total edge-weights of $G = P_n \triangleright H$ under the labeling g_1 , for $k = 1, 2, \ldots, n$, constitute the following sets:

$$W_{g_1}^1 = w_{g_1}^1 + w_{g_1}^2 + n(c+1) + k + w_{g_1}^3$$

= $2k + 1 + w_{g_1}^2 + n(c+1) + k + w_{g_1}^3$
= $C + [2(c_1 + c_2^2 + t_1 + t_2^2) + 3]k; 1 \le k \le n - 1$

with $C = n(c_1^2 - c_1) + c_1 + 2nc_1 + (c_2 - c_2^2) + c_2^2 + 2c_2n(c_1 + 1) + 1 + n(t_1^2 - t_1) + t_1 + 2t_1(cn + 2n - 1) + (t_2 - t_2^2) + t_2^2 + 2t_2(cn + nt_1 + 2n - 1)$. It is easy that the set of total edge-weights $W_{g_1}^1$ consists of an arithmetic sequence of the smallest value *a* when the total edge weights at k = 1 and the feasible difference $d = 2[c_1 + c_2^2 + t_1 + t_2^2] + 3$.

ICCGANT

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012039 doi:10.1088/1742-6596/1008/1/012039

Since the biggest d is attained when $d = 2(c_2^2 + t_2^2)$ then, for $c = p_H$ and $t = q_H$, it gives $d \leq \frac{(p_H^2 + q_H^2)(2n-4) + 2(n-1)q_H}{n-2}$. It concludes the proof.

Figure 1. Illustration of graph $G = P_4 \triangleright S_7$

Theorem 3. For $n \ge 1$, the graph $G = S_n \triangleright H$ admits a super $(a, d) \cdot P_2 \triangleright H$ antimagic total labeling with $a = n + 2 + (n + 1)(c_1^2 - c_1) + c_1(n + 2) + 2c_1(n + 1) + c_2 + c_2^2(n + 1) + 2c_2((n + 1)(c_1 + 1)) + (n + 1)(t_1^2 - t_1) + t_1(n + 2) + 2t_1((n + 1)(c + 1) + n) + t_2 + t_2^2(n + 1) + 2t_2^2((n + 1)(c + t_1 + 1) + n)$ feasible $d = c_1 + c_2^2 + t_1 + t_2^2 + 2$.

Proof. Graph $G = S_n \triangleright H$ has vertex set $V(G) = \{x\} \cup \{z_k; 1 \le k \le n\} \cup \{z_{i,k}; 1 \le i \le c; 1 \le j \le n\}$ and edge set $V(G) = \{e_k; 1 \le k \le n\} \cup \{e_{l,k}; 1 \le l \le t; 1 \le k \le n\}$. Let c and t be positive integers, with $c = p_H - 1$ and $t = q_H$. For $i = 1, 2, \ldots, c$ and $k = 1, 2, \ldots, n$, by Lemma 2,3,4 and 5 we define the vertex and the edge labels as a linear combination of $\mathcal{P}^n_{c_1,c_1}(i,k)$ and $\mathcal{P}^n_{c_2,c_2^2}(i,k)$ as follows:

$$\begin{array}{lll} g_2(x) &=& \{n+1\}\\ g_2(z_k) &=& \{k; 1 \le k \le n\}\\ g_2(x_{i,k}) &=& \{\mathcal{P}_{c_1,c_1}^n \oplus (n+1)\} \cup \{\mathcal{P}_{c_2,c_2}^n \oplus (n+1)(c_1+1)\}\\ g_2(e_k) &=& \{(n+1)(c+1)+k; 1 \le k \le n\}\\ g_2(e_{l,k}) &=& \{\mathcal{P}_{t_1,t_1}^n \oplus [(n+1)(c+1)+n]\} \cup \{\mathcal{P}_{t_2,t_2}^n \oplus [(n+1)(c+t_1+1)+n]\}\end{array}$$

then can be determined a function of the total vertex-weight and edge-weight

ICCGANT

IOP Conf. Series: Journal of Physics: Conf. Series **1008** (2018) 012039 doi:10.1088/1742-6596/1008/1/012039

IOP Publishing

Figure 2. Illustration of graph $G = S_3 \triangleright S_7$

$$\begin{split} w_{g_2}^1 &= n+1+k \\ w_{g_2}^2 &= [\sum_{i=1}^c \mathcal{P}_{c_1,c_1}^n(i,k) \oplus c_1(n+1) + \sum_{i=1}^c \mathcal{P}_{c_1,c_1}^n(i,n+1) \oplus c_1(n+1)] + \\ &= [\sum_{i=1}^c \mathcal{P}_{c_2,c_2}^n(i,k) \oplus c_2((n+1)(c_1+1)) + \sum_{i=1}^c \mathcal{P}_{c_2,c_2}^n(i,n+1) \\ &\oplus c_2((n+1)(c_1+1))] \\ &= [\mathcal{P}_{c_1,c_1}^n(k) \oplus c_1(n+1) + \mathcal{P}_{c_1,c_1}^n(n+1) \oplus c_1(n+1)] + [\mathcal{P}_{c_2,c_2}^n(k) \\ &\oplus c_2((n+1)(c_1+1)) + \mathcal{P}_{c_2,c_2}^n(n+1) \oplus c_2((n+1)(c_1+1))] \\ &= \{[\frac{n+1}{2}(c_1^2 - c_1) + c_1k + c_1(n+1)] + [\frac{n+1}{2}(c_1^2 - c_1) + 2c_1(n+1)] \\ &+ [\frac{c_2 - c_2^2}{2} + c_2^2k + c_2^2 + c_2((n+1)(c_1+1))] + [\frac{c_2 - c_2^2}{2} + c_2^2(n+1) \\ &+ c_2^2 + c_2((n+1)(c_1+1))] \} \\ &= [(n+1)(c_1^2 - c_1) + c_1(n+k+1) + 2c_1(n+1)] + [c_2 + c_2^2(n+k) \\ &+ 2c_2((n+1)(c_1+1))] \\ w_{g_2}^3 &= [\sum_{l=1}^t \mathcal{P}_{t_1,t_1}^n(i,k) \oplus t_1((n+1)(c+1) + n) + \sum_{l=1}^t \mathcal{P}_{t_1,t_1}^n(i,n+1) \end{split}$$

ICCGANT

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012039 doi:10.1088/1742-6596/1008/1/012039

$$\begin{split} \oplus t_1((n+1)(c+1)+n)] + [\sum_{l=1}^t \mathcal{P}_{t_2,t_2^2}^n(i,k) \oplus t_2(n(c+t_1+1)+1+n) \\ &+ \sum_{l=1}^t \mathcal{P}_{t_2,t_2^2}^n(i,n+1) \oplus t_2(n(c+t_1+1)+1+n)] \\ = [\mathcal{P}_{t_1,t_1}^n(k) \oplus t_1((n+1)(c+1)+n) + \mathcal{P}_{t_1,t_1}^n(n+1) \oplus t_1((n+1)(c+1)+n)] \\ &+ [\mathcal{P}_{t_2,t_2^2}^n(k) \oplus t_2((n+1)(c+t_1+1)+n) + \mathcal{P}_{t_2,t_2^2}^n(n+1) \\ &\oplus t_2((n+1)(c+t_1+1)+n)] \\ = \{[\frac{n+1}{2}(t_1^2-t_1) + t_1k + t_1((n+1)(c+1)+n)] + [\frac{n+1}{2}(t_1^2-t_1) \\ &+ t_1(n+1) + t_1((n+1)(c+1)+n)] + [\frac{t_2-t_2^2}{2} + t_2^2k + t_2^2 + \\ &t_2((n+1)(c+t_1+1)+n)] + [\frac{t_2-t_2^2}{2} + t_2^2(n+1) + t_2^2 + \\ &t_2((n+1)(c+t_1+1)+n)] \} \\ = [(n+1)(t_1^2-t_1) + t_1(n+k+1) + 2t_1((n+1)(c+1)+n)] + [t_2+t_2^2(n+k) \\ &+ 2t_2((n+1)(c+k_1+1)+n)] \end{split}$$

The vertex labeling g_2 is a bijective function $g_2 : V(G) \cup E(G) \rightarrow \{1, 2, \dots, p_G + q_G\}$. The total edge-weights of $G = S_n \triangleright H$ under the labeling g_2 , for $k = 1, 2, \dots, n$, constitute the following sets:

$$W_{g_2}^2 = w_{g_2}^1 + w_{g_2}^2 + (n+1)(c+1) + k + w_{g_2}^3$$

= $n+1+k+w_{k_2}^2 + (n+1)(c+1) + k + w_{g_2}^3$
= $C + [c_1 + c_2^2 + t_1 + t_2^2 + 2]k; 1 \le k \le n$

with $C = n + 1 + (n + 1)(c_1^2 - c_1) + c_1(n + 1) + 2c_1(n + 1) + c_2 + c_2^2 n + 2c_2((n + 1)(c_1 + 1)) + (n + 1)(t_1^2 - t_1) + t_1(n + 1) + 2t_1((n + 1)(c + 1) + n) + t_2 + t_2^2 n + 2t_2^2((n + 1)(c + t_1 + 1) + n)$. It is easy that the set of total edge-weights W_{2g_2} consists of an arithmetic sequence of the smallest value a when the edge weights at k = 1 and the difference $d = c_1 + c_2^2 + t_1 + t_2^2 + 2$. Since the biggest d is attained when $d = c_2^2 + t_2^2$

the difference $d = c_1 + c_2^2 + t_1 + t_2^2 + 2$. Since the biggest d is attained when $d = c_2^2 + t_2^2$ then, for $c = p_H$ and $t = q_H + n$, it gives $d \le \frac{(p_H^2 + q_H^2)(2(n+1)-4)+2nq_H}{n-1}$ It concludes the proof.

Concluding Remarks

We have shown the existence of super antimagic labeling for graph operation $G = L \triangleright H$ where L is a $(b, d^*) - EAV$ labeling. We have found $\operatorname{super}(a, d) - P_2 \triangleright H$ antimagic labelings for all differences $d = d^* + d^*(d_v + d_e) + 1$ where d^* is the feasible value of difference in super edge antimagic graph L and d_v and d_e respectively are feasible values

ICCGANT

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012039 doi:10.1088/1742-6596/1008/1/012039

of differences in the partitions $\mathcal{P}_{p_H-1,d_v}^{p_L}$ and $\mathcal{P}_{q_H,d_e}^{p_L}$. We have not found the result for disconnected of graph *G*. Thus, we propose the following open problems.

Open Problem 1. Let L be a subgraph of G and $G = s(L \triangleright H)$. Does G admit a super $(a, d) - P_2 \triangleright H$ antimagic total labeling for $n \ge 2$ and feasible d?

Acknowledgement

We gratefully acknowledge the support from DP2M research grant HIKOM-DIKTI and CGANT - University of Jember of year 2017.

References

- Baca M, Lin Y and Semanicov-Fenovcikov A 2009 Note on super antimagicness of disconnected graphs International J. Graphs and Comb 6 1 47-55
- [2] Baca M, Lin Y, Miller M and Youssef M Z 2007 Edge-antimagic graphs Discrete Mathematics **307** 11 1232-1244
- [3] Baca M, Brankovic L, Lascsakova M, Phanalasy O and Semanicova-Fenovciova A 2013 On dantimagic labelings of plane graphs *Electronic Journal of Graph Theory and Applications* (*EJGTA*) **1** 1 28-39
- [4] Dafik, Purnapraja A K and Hidayat R 2015 Cycle-Super Antimagicness of Connected and Disconnected Tensor Product of Graphs Procedia Computer Science 74 93-99
- [5] Dafik, Slamin, Tanna D, Semanicova-Fenovcikova A and Baca M 2017 Constructions of Hantimagic graphs using smaller edge-antimagic graphs Ars Combinatoria 133 233-245
- [6] Dafik, Hasan M, Azizah, Y N and Agustin I H 2017 A generalized shackle of any graph H admits a super H-antimagic total labeling In Journal of Physics: Conference Series IOP Publishing 893 1 012042
- [7] Dafik, Purnapraja A K, Hidayat R 2015 Cycle Super Antimagicness of Connected and Disconnected Tensor Product of Graphs Procedia Computer Science 74 93-99
- [8] Dafik and Agustin I H 2016 Super (a, d)- F_n -antimagic total labeling for a connected and disconnected amalgamation of fan graphs In AIP Conference Proceedings AIP Publishing **1707** 1 020003
- [9] Gross J L and Yellen J eds 2004 Handbook of graph theory CRC press
- [10] Agustin I H, Dafik, Prihandini R M 2018 P₂ > H-super antimagic total labeling of comb product of graph AKCE International Journal of Graphs and Combinatorics In Press
- [11] Inayah N, Salman A N M and Simanjuntak R 2009 On (a, d)-H-antimagic coverings of graphs Journal of Combinatorial Mathematics and Combinatorial Computing 71 273
- [12] Jeyanthi P and Selvagopal P 2010 More classes of H-supermagic Graphs Intern. J. of Algorithms, Computing and Mathematics 3 1 93-108
- [13] Maryati T K, Salman A N M, Baskoro E T, Ryan J and Miller M 2010 On H-supermagic labelings for certain shackles and amalgamations of a connected graph Utilitas Mathematica 83 333
- [14] Llad A and Moragas J 2007 Cycle-magic graphs Discrete Mathematics **307** 23 2925-2933
- [15] Ngurah A A G, Salman A N M and Susilowati L 2010 H-supermagic labelings of graphs Discrete Mathematics 310 8 1293-1300
- [16] Saputro S W, Mardiana N and Purwasi I A 2013 The metric dimension of comb product graph In Graph Theory Conference in Honor of Egawas 60th Birthday September 10
- [17] Rizvi S T R, Ali K and Hussain M 2014 Cycle-supermagic labelings of the disjoint union of graphs Utilitas Mathematica
- [18] Roswitha M and Baskoro ET 2012, May H-magic covering on some classes of graphs In AIP Conference Proceedings 1450 1 135-138
- [19] Simanjuntak R, Bertault F and Miller M 2000 Two new (a, d)-antimagic graph labelings In Proc. of Eleventh Australasian Workshop on Combinatorial Algorithms 11 179-189