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Preface
It is with my great pleasure and honor to organize the First International Conference on
Combinatorics, Graph Theory and Network Topology which is held from 25-26 November 2017
in the University of Jember, East Java, Indonesia and present a conference proceeding index by
Scopus. It is the first international conference organized by CGANT Research Group University
of Jember in cooperation with Indonesian Combinatorics Society (INACOBMS). The conference
is held to welcome participants from many countries, with broad and diverse research interests of
mathematics especially combinatorical study. The mission is to become an annual international
forum in the future, where, civil society organization and representative, research students,
academics and researchers, scholars, scientist, teachers and practitioners from all over the world
could meet in and exchange an idea to share and to discuss theoretical and practical knowledge
about mathematics and its applications. The aim of the first conference is to present and
discuss the latest research that contributes to the sharing of new theoretical, methodological
and empirical knowledge and a better understanding in the area mathematics, application of
mathematics as well as mathematics education.

The themes of this conference are as follows: (1) Connection of distance to other graph
properties, (2) Degree/diameter problem, (3) Distance-transitive and distance-regular graphs,
(4) Metric dimension and related parameters, (5) Cages and eccentric graphs, (6) Cycles and
factors in graphs, (7) Large graphs and digraphs, (8) Spectral Techniques in graph theory,
(9) Ramsey numbers, (10) Dimensions of graphs, (11) Communication networks, (12) Coding
theory, (13) Cryptography, (14) Rainbow connection, (15) Graph labelings and coloring, (16).
Applications of graph theory

The topics are not limited to the above themes but they also include the mathematical
application research of interest in general including mathematics education, such as:(1)
Applied Mathematics and Modelling, (2) Applied Physics: Mathematical Physics, Biological
Physics, Chemistry Physics,(3) Applied Engineering: Mathematical Engineering, Mechanical
engineering, Informatics Engineering, Civil Engineering,(4) Statistics and Its Application,(5)
Pure Mathematics (Analysis, Algebra and Geometry),(6) Mathematics Education, (7) Literacy
of Mathematics,(8) The Use of ICT Based Media In Mathematics Teaching and Learning,(9)
Technological, Pedagogical, Content Knowledge for Teaching Mathematics, (10) Students Higher
Order Thinking Skill of Mathematics, (11) Contextual Teaching and Realistic Mathematics,
(12) Science, Technology, Engineering, and Mathematics Approach, (13) Local Wisdom Based
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Education: Ethnomathematics, (14) Showcase of Teaching and Learning of Mathematics, (16)
The 21st Century Skills: The Integration of 4C Skill in Teaching Math.

The participants of this ICCGANT 2017 conference were 200 people consisting research
students, academics and researchers, scholars, scientist, teachers and practitioners from many
countries. The selected papers to be publish of Journal of Physics: Conference Series are 80
papers. On behalf of the organizing committee, finally we gratefully acknowledge the support
from the University of Jember of this conference. We would also like to extend our thanks to
all lovely participants who are joining this unforgettable and valuable event.

Prof. Drs. Dafik, M.Sc., Ph.D.
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Abstract. Let G = (V (G), E(G) be a connected graph and vεV (G). A dominating set for a
graph G = (V, E) is a subset D of V such that every vertex not in D is adjacent to at least one
member of D. The domination number γ(G) is the number of vertices in a smallest dominating
set for G. Vertex set S in graph G = (V, E) is a locating dominating set if for each pair of distinct
vertices u and v in V (G)− S we have N(u) ∩ S �= φ, N(v) ∩ S �= φ, and N(u) ∩ S �= N(v) ∩ S,
that is each vertex outside of S is adjacent to a distinct, nonempty subset of the elements of
S. In this paper, we characterize the locating dominating sets in the corona product of graphs
namely path, cycle, star, wheel, and fan graph.

Keywords : Locating dominating sets, dominating sets, locating dominating number,
corona product

1. Introduction

Locating dominating set a natural expansion of dominating set. Historically, dominating
set has been studied from the 1960 and developed in the 1970. Foucaud (2016) mention locating
dominating set was first introduced and studied by Slater in 1987 [2,3]. Dominating set is a
concept of determining a vertex set on a graph, where the vertex that has a condition can
dominate the point around it, and the cardinality of members of set should be minimum.
Minimum cardinality of the set dominance is called the domination number denoted by γ [1, 4].

According to Haynes and Henning, the set D from vertex of a simple graph G is called
dominating set if every vertex u ∈ V (G)−D adjacent on some vertex v ∈ D [9,10,11,12]. Let a
directed graph not G = (V,E), dominating set is a subset of S ⊆ V of vertex at G, for all vertex
v ∈ V one of v ∈ S or a neighbor from s ie u is at S [7, 8].

A vertex set of graph G = (V,E) is locating dominating set, if set of vertex dominator denoted
by D qualifies that any vertex other than D,that is V −D have different intersection with D.
Let V be the vertex and E is the edge set of graph G so {u, v ∈ V \D} then N(u) ∩ D �= ∅,
N(v) ∩ D �= ∅, and N(u) ∩ D �= N(v) ∩ D, where N(u) is vertex neighbors of u and N(v) is
vertex neighbors of v. Locating dominating number is the minimum cardinality of the locating
dominating set. Locating dominating number is denoted by γL.
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Some definitions used in this study are :

Definition 1.1 Let G be a connected graph with |V (G)| = p1 and |E(G)| = q1 the graph H is a

connected graph that has |V (H)| = p2 dan |E(H)| = q2. The cardinality of vertex set and edge

set at G�H respectly are |V (G�H)| = p1(p2 + 1) and |E(G�H)| = p1(p2 + q2) + q1.

2. Main Result

In this paper, we have studied locating domination number of some corona product. The
results of this research, we found several lemma, theorem, and corollary about the locating
domination number of corona products.

Lemma 2.1 Let G and H be a connected graph, the locating domination number of G �H is

γL(G�H) ≥ |V (G)| · γL(H).

Proof. The corona products of G and H denoted by G �H is a connected graph with the
cardinality of vertex set and edge set respectively are |V (G �H)| = |V (G)| · (|V (H)| + 1) and
|E(G�H)| = |V (G)| · (|V (H)|+ |E(H)|) + |E(V )|.

We prove that the lower bound of locating domination number is γL(G�H) ≥ |V (G)|·γL(H).
Based on definition of the corona graph, the graph G�H has subgraph H as much as |V (G)|.
If the vertex dominator on the subgraph H, that is γL(H1) = γL(H2) = γL(H3) = . . . =
γL(H|V (G)|), then γL(G�H) ≥ γL(H1)+γL(H2)+γL(H3)+ . . .+γL(H|V (G)|). It concludes that
γL(G�H) ≥ |V (G)| · γL(H). �

Theorem 2.2 For n ≥ 4, the locating domination number of G � Cn is γL(G � Cn) =
|V (G)| · 	2n

5 
.

Proof. Corona products of G and cyle graph Cn denoted by G � Cn is a connected graph
with the cardinality of vertex set and edge set respectively are |V (G�Cn)| = |V (G)|(n+1) and
|E(G� Cn)| = n(|V (G)| + |E(G)| + 1).

Based on Lemma 2.1, lower bound of locating domination number G� Cn is γL(G � Cn) ≥
|V (G)| · 	2n

5 
. However we can attain sharpest lower bound. Forthemore, we prove the upper

bound of locating domination number is γL(G � Cn) ≤ |V (G)| · 	2n
5 
. We determine vertex

dominator of G � Cn on the subgraph Cn, that is D = {xij ; 1 ≤ i ≤ |V (G)|; 1 ≤ j ≤ 	2n
5 
}, so

|D| = |V (G)| · 	2n
5 
. The neighbors of V −D = {xi, xij ; 1 ≤ i ≤ |V (G)|; 1 ≤ j ≤ n− 	2n

5 
} has
different intersection sets with D, it is N(xi(5k)) ∩ D = {xi(5k−1), xi(5k+1)}, N(xi(5k−2)) ∩ D =
{xi(5k−1)}, N(xi(5k−3)) ∩D = {xi(5k−4)}, N(xi) ∩D = {xij ; j ≡ 1 mod5; j ≡ 4 mod5}.

It is easy to see that γ(G � Cn) meet γ(G � Cn) ≤ |V (G)| · 	2n
5 
. Therefore upper bound is

γ(G� Cn) ≤ |V (G)| · 	2n
5 
. It concludes that γ(G� Cn) = |V (G)| · 	2n

5 
. �

For the illustration of the locating domination number of G � C4 can be seen in
Figure 1, we mark the vertex is the vertex dominator of locating dominating set. G �
C4 has vertex dominator D = {xij ; 1 ≤ i ≤ |V (G)|; 1 ≤ j ≤ n} is that D =
{x12, x13, x22, x23, . . . , x|V (G)|2, x|V (G)|3} and another vertex which is not vertex dominator
(V − D) = {x11, x14, x21, x24, . . . , xp11, xp14, x1, x2, x3, . . . , x|V (G)|} has different neighbors in
D, that is N(x11) ∩ D = {x12}, N(x14) ∩ D = {x13}, N(x21) ∩ D = {x22}, N(x21) ∩ D =
{x22}, N(x24)∩D = {x23}, . . . , N(xp11)∩D = {x|V (G)|2}, N(x|V (G)|4)∩D = {x|V (G)|3}, N(x1)∩
D = {x12, x13}, N(x2) ∩D = {x22, x23}, . . . , N(x|V (G)|) ∩D = {x|V (G)|2, x|V (G)|3}. It is easy to
see N(u, v) ∩D �= ∅ and N(u) ∩D �= N(v) ∩D. It is concludes that γL(G� C4) = 2|V (G)|.
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x|V (G)|

x1

x|V (G)|1

x|V (G)|3
x|V (G)|4

x12

x13

x|V (G)|2
x11

x14

G� C4

Figure 1. Locating domination number of G� C4 is 2 · |V (G)|

The corollary of theorem :

Corollary 2.3 For n ≥ 3 and m ≥ 4, the locating domination number of Pn � Cm is

γL(Pn � Cm) = n · 	2m
5 
.

Corollary 2.4 For n ≥ 3 and m ≥ 4, the locating domination number of Cn � Cm is

γL(Cn � Cm) = n · 	2m
5 
.

Corollary 2.5 For n ≥ 3 and m ≥ 4, the locating domination number of Sn � Cm is

γL(Sn � Cm) = (n + 1) · 	2m
5 
.

Corollary 2.6 For n ≥ 3 and m ≥ 4, the locating domination number of Wn � Cm is

γL(Wn � Cm) = (n + 1) · 	2m
5 
.

Corollary 2.7 For n ≥ 3 and m ≥ 4, the locating domination number of Fn � Cm is

γL(Fn � Cm) = (n + 1) · 	2m
5 
.

Theorem 2.8 For n ≥ 3, the locating domination number of G � Pn is γL(G � Pn) =
|V (G)| · 	2n

5 
.

Proof. Corona products of G and path graph Pn denoted by G � Pn is a connected graph
with the cardinality of vertex set and edge set respectively are |V (G�Pn)| = |V (G)|(n+1) and
|E(G� Pn)| = n(|V (G)|+ |E(G)| + 1).

Based on Lemma 2.1, lower bound of locating domination number G � Pn is γL(G � Pn) ≥
|V (G)| · 	2n

5 
. However we can attain sharpest lower bound. Forthemore, we prove the upper

bound of locating domination number is γL(G � Pn) ≤ |V (G)| · 	2n
5 
. We determine vertex

dominator of G � Pn on the subgraph Pn, that is D = {xij ; 1 ≤ i ≤ |V (G)|; 1 ≤ j ≤ 	2n
5 
},

so |D| = |V (G)| · 	2n
5 
. The next, we will show that the neighbors of V − D = {xi, xij ; 1 ≤

i ≤ |V (G)|; 1 ≤ j ≤ n − 	2n
5 
} has different intersection sets with D, it is N(xi(5k)) ∩ D =

{xi(5k−1), xi(5k+1)}, N(xi(5k−2)) ∩ D = {xi(5k−1)}, N(xi(5k−3)) ∩ D = {xi(5k−4)}, N(xi) ∩ D =
{xij ; j ≡ 1 mod5; j ≡ 4 mod5}.

It is easy to see that γ(G � Pn) meet γ(G � Pn) ≤ |V (G)| · 	2n
5 
. Therefore upper bound is

γ(G� Pn) ≤ |V (G)| · 	2n
5 
. It concludes that γ(G� Pn) = |V (G)| · 	2n

5 
. �

For the illustration of the locating domination number of G � P4 can be seen in
Figure 2, we mark the vertex is the vertex dominator of locating dominating set. G �
P4 has vertex dominator D = {xij ; 1 ≤ i ≤ |V (G)|; 1 ≤ j ≤ n} is that D =
{x12, x13, x22, x23, . . . , x|V (G)|2, x|V (G)|3} and another vertex which is not vertex dominator
(V − D) = {x11, x14, x21, x24, . . . , xp11, xp14, x1, x2, x3, . . . , x|V (G)|} has different neighbors in
D, that is N(x11) ∩ D = {x12}, N(x14) ∩ D = {x13}, N(x21) ∩ D = {x22}, N(x21) ∩ D =
{x22}, N(x24)∩D = {x23}, . . . , N(xp11)∩D = {x|V (G)|2}, N(x|V (G)|4)∩D = {x|V (G)|3}, N(x1)∩
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x1

G� P4

x|V (G)|1

x|V (G)|2

x|V (G)|3

x|V (G)|4

x11

x12

x13

x14

x|V (G)|

Figure 2. Locating domination number of G� P4 is 2 · |V (G)|

D = {x12, x13}, N(x2) ∩D = {x22, x23}, . . . , N(x|V (G)|) ∩D = {x|V (G)|2, x|V (G)|3}. It is easy to
see N(u, v) ∩D �= ∅ and N(u) ∩D �= N(v) ∩D. It is concludes that γL(G� P4) = 2|V (G)|.

The corollary of theorem :

Corollary 2.9 For n ≥ 3 and m ≥ 4, the locating domination number of Pn � Pm is

γL(Pn � Pm) = n · 	2m
5 
.

Corollary 2.10 For n ≥ 3 and m ≥ 4, the locating domination number of Cn � Pm is

γL(Cn � Pm) = n · 	2m
5 
.

Corollary 2.11 For n ≥ 3 and m ≥ 4, the locating domination number of Sn � Pm is

γL(Sn � Pm) = (n + 1) · 	2m
5 
.

Corollary 2.12 For n ≥ 3 and m ≥ 4, the locating domination number of Wn � Pm. is

γL(Wn � Pm) = (n + 1) · 	2m
5 
.

Corollary 2.13 For n ≥ 3 and m ≥ 4, the locating domination number of Fn � Pm is

γL(Fn � Pm) = (n + 1) · 	2m
5 
.

Lemma 2.14 Let G and H be a connected graph, the locating domination number of G�H is

γL(G�H) ≤ γ(G) + |V (G)| · γL(H).

Proof. The corona products of G and H denoted by G �H is a connected graph with the
cardinality of vertex set and edge set respectively are |V (G �H)| = |V (G)| · (|V (H)| + 1) and
edge’s cardinality |E(G�H)| = |V (G)| · (|V (H)|+ |E(H)|) + |E(V )|.

We prove that the upper bound of locating domination number is γL(G � H) ≤ γ(G) +
|V (G)| · γL(H). Based on definition of the corona graph, every G�H has subgraph H as much
as |V (G)|. If the vertex dominator on the subgraph G that is γ(G) and on the subgraph H

that is γL(H1) = γL(H2) = γL(H3) = . . . = γL(H|V (G)|), then γL(G�H) ≥ γL(H1) + γL(H2) +
γL(H3) + . . . + γL(H|V (G)| + γ(G)). It concludes that γL(G�H) ≤ γ(G) + |V (G)| · γL(H). �

Theorem 2.15 For n ≥ 4, the locating domination number of G � Sn is γL(G � Sn) =
γ(G) + |V (G)| · n.

Proof. Corona products of G and path graph Sn denoted by G � Sn is a connected graph
with the cardinality of vertex set and edge set respectively are |V (G � Sn)| = |V (G)| · (n + 2)
and |E(G � Sn)| = |V (G)| · (2n + 1) + |E(G)|.

Based on Lemma 2.2, upper bound of locating domination number G� Sn is γL(G� Sn) ≥
γ(G)+ |V (G)| ·n. However we can attain sharpest lower bound. Forthemore, we prove the lower

Digital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/


5

1234567890 ‘’“”

ICCGANT IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012053  doi :10.1088/1742-6596/1008/1/012053

bound of locating domination number is γL(G � Sn) ≥ γ(G) + |V (G)| · n. We determine set
of vertex dominator of G � Sn on the subgraph G, that is D = {xi; 1 ≤ i ≤ γ(G)} and on the
subgraph Sn, that is D = {xij ; 1 ≤ i ≤ |V (G)|; 1 ≤ j ≤ n} so |D| = γ(G)+ |V (G)| ·n. The next,
we will show that the neighbors of V − D = {xi, xij ; 1 ≤ i ≤ |V (G)|; j = n + 1} has different
intersection sets with D, it is N(xi(n+1)) ∩ D = {xi1, xi2, . . . , xin; 1 ≤ i ≤ n}, N(xi) ∩ D =
{xi1, xi2, . . . , xin, γ(G); 1 ≤ i ≤ n}.

It is easy to see that γ(G�Sn) meet γL(G�Sn) ≥ γ(G)+ |V (G)| ·n. Therefore lower bound
is γL(G� Sn) ≥ γ(G) + |V (G)| · n. It concludes that γL(G� Sn) = γ(G) + |V (G)| · n. �

For the illustration of the locating domination number of G � S4 can be seen in Fig-
ure 3, we mark the vertex is the vertex dominator of locating dominating set. G �
S4 has vertex dominator D = {xi;xij ; 1 ≤ i ≤ |V (G)|; 1 ≤ j ≤ n} is that
D = {x11, x12, x13, x14, x21, x12, x23, x24, . . . , xp11, xp12, xp13, xp14} and another vertex which is
not vertex dominator (V − D) = {x15, x25, . . . , xp15, γ(G)} has different neighbors in D,
that is N(x15) ∩ D = {x11, x12, x13, x14}, N(x25) ∩ D = {x21, x22, x23, x24}, . . . , N(xp15) ∩
D = {xp11, xp12, xp13, xp14}, N(x1) ∩ D = {x11, x12, x13, x14, γ(G)}, N(x2) ∩ D =
{x21, x22, x23, x24, γ(G)}, . . . , N(xp1) ∩ D = {xp11, xp12, xp13, xp14, γ(G)}. It is easy to see
N(u, v) ∩D �= ∅ and N(u) ∩D �= N(v) ∩D. It is concludes that γL(G� S4) = γ(G) + 4|V (G)|.

x1

x3

x2

x14

x15

x24

x35

x25

x21

x22x23

x33

x12

x31

x13

x34

x11

x32

G� S4

x|V (G)|

x|V (G)|2 x|V (G)|3

x|V (G)|5

x|V (G)|4x|V (G)|1

Figure 3. Locating domination number of G� S4 is γ(G) + 4 · |V (G)|

The corollary of theorem :

Corollary 2.16 For n ≥ 3 and m ≥ 4, the locating domination number of Pn � Sm is

γL(Pn � Sm) = γ(G) + n ·m.

Corollary 2.17 For n ≥ 3 and m ≥ 4, the locating domination number of Cn � Sm is

γL(Cn � Sm) = γ(G) + n ·m.

Corollary 2.18 For n ≥ 3 and m ≥ 4, the locating domination number of Sn � Sm is

γL(Sn � Sm) = γ(G) + (n + 1) ·m.
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Corollary 2.19 For n ≥ 3 and m ≥ 4, the locating domination number of Wn � Sm is

γL(Wn � Sm) = γ(G) + (n + 1) ·m.

Corollary 2.20 For n ≥ 3 and m ≥ 4, the locating domination number of Fn � Sm is

γL(Fn � Sm) = γ(G) + (n + 1) ·m.

Theorem 2.21 For n ≥ 4, the locating domination number of G � Wn is γL(G � Wn) =
γ(G) + |V (G)| · 	2n

5 
.

Proof. Corona products of G and path graph Wn denoted by G�Wn is a connected graph
with the cardinality of vertex set and edge set respectively are |V (G �Wn)| = p1(n + 2) and
|E(G�Wn)| = 3np1 + q1.

Based on Lemma 2.2, upper bound of locating domination number G�Wn is γL(G�Wn) ≥
γ(G) + |V (G)| · 	2n

5 
. However we can attain sharpest lower bound. Forthemore, we prove the

lower bound of locating domination number is γL(G�Wn) ≥ γ(G)+ |V (G)| ·	2n
5 
. We determine

set of vertex dominator of G�Sn on the subgraph G, that is D = {xi; 1 ≤ i ≤ γ(G)} and on the
subgraph Sn, that is D = {xij ; 1 ≤ i ≤ |V (G)|; 1 ≤ j ≤ 	2n

5 
} so |D| = γ(G)+ |V (G)| ·	2n
5 
. The

next, we will show that the neighbors of V −D = {xi, xij ; 1 ≤ i ≤ |V (G)|; 1 ≤ j ≤ (n+1)−	2n
5 
}

has different intersection sets with D, it is N(xi(5k)) ∩ D = {xi(5k−1), xi(5k+1)}, N(xi(5k−2)) ∩
D = {xi(5k−1)}, N(xi(5k−3)) ∩ D = {xi(5k−4)}, N(xi(n+1)) ∩ D = {xi(5k−4), xi(5k−1); 1 ≤ k ≤
	n
}, N(xi) ∩D = {xij , γ(G); j ≡ 1 mod5; j ≡ 4 mod5}.

It is easy to see that γ(G �Wn) meet γL(G �Wn) ≥ γ(G) + |V (G)| · 	2n
5 
. Therefore lower

bound is γL(G�Wn) ≥ γ(G)+|V (G)|·	2n
5 
. It concludes that γL(G�Wn) = γ(G)+|V (G)|·	2n

5 
.
�

For the illustration of the locating domination number of G � W4 can be seen in
Figure 4, we mark the vertex is the vertex dominator of locating dominating set. G �
W4 has vertex dominator D = {xi;xij ; 1 ≤ i ≤ |V (G)|; 1 ≤ j ≤ n} is that D =
{x11, x14, x21, x24, . . . , x|V (G)|1, x|V (G)|4} and another vertex which is not vertex dominator
(V − D) = {x12, x13, x15, x22, x23, x25, . . . , x|V (G)|2, x|V (G)|3, x|V (G)|5, x1, x2, x3, . . . , x|V (G)|} has
different neighbors in D, that is N(x12) ∩ D = {x11}, N(x13) ∩ D = {x14}, N(x15) ∩ D =
{x11, x14}, N(x22)∩D = {x21}, N(x23)∩D = {x24}, N(x25)∩D = {x21, x24}, . . . , N(x|V (G)|2)∩
D = {x|V (G)|1}, N(x|V (G)|3)∩D = {x|V (G)|4}, N(x|V (G)|5)∩D = {x|V (G)|1, x|V (G)|4}, N(x1)∩D =
{x11, x14, γ(G)}, N(x2) ∩ D = {x21, x24, γ(G)}, . . . , N(x|V (G)|) ∩ D = {x|V (G)|1, x|V (G)|4, γ(G)}.
It is easy to see N(u, v) ∩ D �= ∅ and N(u) ∩ D �= N(v) ∩ D. It is concludes that
γL(G�W4) = γ(G) + 2|V (G)|.

The corollary of theorem :

Corollary 2.22 For n ≥ 3 and m ≥ 4, the locating domination number of Pn � Wm is

γL(Pn �Wm) = γ(G) + n · 	2m
5 
.

Corollary 2.23 For n ≥ 3 and m ≥ 4, the locating domination number of Cn � Wm is

γL(Cn �Wm) = γ(G) + n · 	2m
5 
.

Corollary 2.24 For n ≥ 3 and m ≥ 4, the locating domination number of Sn � Wm is

γL(Sn �Wm) = γ(G) + (n + 1) · 	2m
5 
.

Corollary 2.25 For n ≥ 3 and m ≥ 4, the locating domination number of Wn � Wm. is

γL(Wn �Wm) = γ(G) + (n + 1) · 	2m
5 
.

Corollary 2.26 For n ≥ 3 and m ≥ 4, the locating domination number of Fn � Wm is

γL(Fn �Wm) = γ(G) + (n + 1) · 	2m
5 
.
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x2
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x13
x14

x15

x22x23

x24

x33 x34

x35

x25

x21

x31x32

G�W4

x11

x|V (G)|5 x|V (G)|

x|V (G)|2

x|V (G)|1

x|V (G)|3

x|V (G)|4

x1

x3

Figure 4. Locating domination number of G�W4 is γ(G) + 2 · |V (G)|

Theorem 2.27 For n ≥ 4, the locating domination number of G � Fn is γL(G � Fn) =
γ(G) + |V (G)| · 	2n

5 
.

Proof. Corona products of G and path graph Fn denoted by G � Fn is a connected graph
with the cardinality of vertex set and edge set respectively are |V (G � Fn)| = p1(n + 2) and
|E(G� Fn)| = 2np1 + q1.

Based on Lemma 2.2, upper bound of locating domination number G�Wn is γL(G� Fn) ≥
γ(G) + |V (G)| · 	2n

5 
. However we can attain sharpest lower bound. Forthemore, we prove the

lower bound of locating domination number is γL(G�Fn) ≥ γ(G)+ |V (G)| ·	2n
5 
. We determine

vertex dominator of G � Fn on the subgraph G, that is D = {xi; 1 ≤ i ≤ γ(G)} and on the
subgraph Fn, that is D = {xij ; 1 ≤ i ≤ |V (G)|; 1 ≤ j ≤ 	2n

5 
} so |D| = γ(G)+ |V (G)| ·	2n
5 
. The

next, we will show that the neighbors of V −D = {xi, xij ; 1 ≤ i ≤ |V (G)|; 1 ≤ j ≤ (n+1)−	2n
5 
}

has different intersection sets with D, it is N(xi(5k)) ∩ D = {xi(5k−1), xi(5k+1)}, N(xi(5k−2)) ∩
D = {xi(5k−1)}, N(xi(5k−3)) ∩ D = {xi(5k−4)}, N(xi(n+1)) ∩ D = {xi(5k−4), xi(5k−1); 1 ≤ k ≤
	n
}, N(xi) ∩D = {xij , γ(G); j ≡ 1 mod5; j ≡ 4 mod5}.

It is easy to see that γ(G � Fn) meet γL(G � Fn) ≥ γ(G) + |V (G)| · 	2n
5 
. Therefore lower

bound is γL(G�Fn) ≥ γ(G)+ |V (G)| ·	2n
5 
. It concludes that γL(G�Fn) = γ(G)+ |V (G)| ·	2n

5 
.
�

For the illustration of the locating domination number of G � F4 can be seen in
Figure 5, we mark the vertex is the vertex dominator of locating dominating set. G �
F4 has vertex dominator D = {xi;xij ; 1 ≤ i ≤ |V (G)|; 1 ≤ j ≤ n} is that D =
{x11, x14, x21, x24, . . . , x|V (G)|1, x|V (G)|4} and another vertex which is not vertex dominator
(V − D) = {x12, x13, x15, x22, x23, x25, . . . , x|V (G)|2, x|V (G)|3, x|V (G)|5, x1, x2, x3, . . . , x|V (G)|} has
different neighbors in D, that is N(x12) ∩ D = {x11}, N(x13) ∩ D = {x14}, N(x15) ∩ D =
{x11, x14}, N(x22)∩D = {x21}, N(x23)∩D = {x24}, N(x25)∩D = {x21, x24}, . . . , N(x|V (G)|2)∩
D = {x|V (G)|1}, N(x|V (G)|3)∩D = {x|V (G)|4}, N(x|V (G)|5)∩D = {x|V (G)|1, x|V (G)|4}, N(x1)∩D =
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{x11, x14, γ(G)}, N(x2) ∩ D = {x21, x24, γ(G)}, . . . , N(x|V (G)|) ∩ D = {x|V (G)|1, x|V (G)|4, γ(G)}.
It is easy to see N(u, v) ∩ D �= ∅ and N(u) ∩ D �= N(v) ∩ D. It is concludes that
γL(G� F4) = γ(G) + 2|V (G)|.

x1

x3

x2

x15

x35

x32x33

G� F4

x22

x23

x21

x34

x11 x14

x31

x24

x25

x13x12

x|V (G)|5
x|V (G)|1

x|V (G)|

x|V (G)|3

x|V (G)|2

x|V (G)|4

Figure 5. Locating domination number of G� F4 is γ(G) + 2 · |V (G)|

The corollary of theorem :

Corollary 2.28 For n ≥ 3 and m ≥ 4, the locating domination number of Pn � Fm is

γL(Pn � Fm) = γ(G) + n · 	2m
5 
.

Corollary 2.29 For n ≥ 3 and m ≥ 4, the locating domination number of Cn � Fm is

γL(Cn � Fm) = γ(G) + n · 	2m
5 
.

Corollary 2.30 For n ≥ 3 and m ≥ 4, the locating domination number of Sn � Fm is

γL(Sn � Fm) = γ(G) + (n + 1) · 	2m
5 
.

Corollary 2.31 For n ≥ 3 and m ≥ 4, the locating domination number of Wn � Fm. is

γL(Wn � Fm) = γ(G) + (n + 1) · 	2m
5 
.

Corollary 2.32 For n ≥ 3 and m ≥ 4, the locating domination number of Fn � Fm is

γL(Fn � Fm) = γ(G) + (n + 1) · 	2m
5 
.

3. Conclusion

Based on the results of the above research, then we can conclude the locating domination
number of G�H is γL(G�H) ≥ |V (G)|·γL(H) and G�H is γL(G�H) ≤ γ(G)+|V (G)|·γL(H).

Open Problem 3.1. Define the locating domination number of the other operations graph
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