PAPER • OPEN ACCESS

The 1st International Conference of Combinatorics, Graph Theory, and Network Topology

To cite this article: 2018 J. Phys.: Conf. Ser. 1008011001

Related content
The Committees of The First International Conference on Combinatorics, Graph Theory and Network Topology (ICCGANT)

Optimization of scheduling system for plant watering using electric cars in agro techno park Nelly Oktavia Adiwijaya, Yudha Herlambang and Slamin

Some Pictures of The 2015 International Conference on Mathematics, its Applications, and Mathematics Education Sudi Mungkasi

View the article online for updates and enhancements.

The First International Conference on Combinatorics, Graph Theory and Network Topology (ICCGANT)

Dafik
Editor in Chief of ICCGANTs Publication, University of Jember, Jember, Indonesia
E-mail: d.dafik@unej.ac.id

Preface

It is with my great pleasure and honor to organize the First International Conference on Combinatorics, Graph Theory and Network Topology which is held from 25-26 November 2017 in the University of Jember, East Java, Indonesia and present a conference proceeding index by Scopus. It is the first international conference organized by CGANT Research Group University of Jember in cooperation with Indonesian Combinatorics Society (INACOBMS). The conference is held to welcome participants from many countries, with broad and diverse research interests of mathematics especially combinatorical study. The mission is to become an annual international forum in the future, where, civil society organization and representative, research students, academics and researchers, scholars, scientist, teachers and practitioners from all over the world could meet in and exchange an idea to share and to discuss theoretical and practical knowledge about mathematics and its applications. The aim of the first conference is to present and discuss the latest research that contributes to the sharing of new theoretical, methodological and empirical knowledge and a better understanding in the area mathematics, application of mathematics as well as mathematics education.

The themes of this conference are as follows: (1) Connection of distance to other graph properties, (2) Degree/diameter problem, (3) Distance-transitive and distance-regular graphs, (4) Metric dimension and related parameters, (5) Cages and eccentric graphs, (6) Cycles and factors in graphs, (7) Large graphs and digraphs, (8) Spectral Techniques in graph theory, (9) Ramsey numbers, (10) Dimensions of graphs, (11) Communication networks, (12) Coding theory, (13) Cryptography, (14) Rainbow connection, (15) Graph labelings and coloring, (16). Applications of graph theory

The topics are not limited to the above themes but they also include the mathematical application research of interest in general including mathematics education, such as:(1) Applied Mathematics and Modelling, (2) Applied Physics: Mathematical Physics, Biological Physics, Chemistry Physics,(3) Applied Engineering: Mathematical Engineering, Mechanical engineering, Informatics Engineering, Civil Engineering,(4) Statistics and Its Application,(5) Pure Mathematics (Analysis, Algebra and Geometry),(6) Mathematics Education, (7) Literacy of Mathematics,(8) The Use of ICT Based Media In Mathematics Teaching and Learning,(9) Technological, Pedagogical, Content Knowledge for Teaching Mathematics, (10) Students Higher Order Thinking Skill of Mathematics, (11) Contextual Teaching and Realistic Mathematics, (12) Science, Technology, Engineering, and Mathematics Approach, (13) Local Wisdom Based

Education: Ethnomathematics, (14) Showcase of Teaching and Learning of Mathematics, (16) The 21st Century Skills: The Integration of 4C Skill in Teaching Math.

The participants of this ICCGANT 2017 conference were 200 people consisting research students, academics and researchers, scholars, scientist, teachers and practitioners from many countries. The selected papers to be publish of Journal of Physics: Conference Series are 80 papers. On behalf of the organizing committee, finally we gratefully acknowledge the support from the University of Jember of this conference. We would also like to extend our thanks to all lovely participants who are joining this unforgettable and valuable event.

Prof. Drs. Dafik, M.Sc., Ph.D.

PAPER • OPEN ACCESS

The Committees of The First International Conference on Combinatorics, Graph Theory and Network Topology (ICCGANT)

Related content

- List of committees
- List of Committees

Committees

To cite this article: 2018 J. Phys.: Conf. Ser. 1008011002

View the article online for updates and enhancements.

The Committees of The First International Conference on Combinatorics, Graph Theory and Network Topology (ICCGANT)

Dafik
Editor in Chief of ICCGANTs Publication, University of Jember, Jember, Indonesia Professor of Combinatorics and Graph Theory
E-mail: d.dafik@unej.ac.id

Advisory Committee

Moch. Hasan Rector of the University of Jember
Zulfikar Vice Rector of the University of Jember
Slamin President of Indonesian Combinatorial Society

Organizing Committee
Dafik Chairperson
Ika Hesti Agustin Secretary

Advisory Editorial Board

Surahmat University of Islam Malang, Indonesia Syafrizal Sy University of Andalas, Indonesia

Editorial Board

Arika Indah Kristiana	University of Jember, Indonesia
Abduh Riski	University of Jember, Indonesia
Ikhsanul Halikin	University of Jember, Indonesia
Ridho Alfarisi	University of Jember, Indonesia
Rafiantika Megahnia Prihandini	University of Jember, Indonesia
Kusbudiono	University of Jember, Indonesia
Ermita Rizky Albirri	University of Jember, Indonesia
Robiatul Adawiyah	University of Jember, Indonesia
Dwi Agustin Retno Wardani	IKIP PGRI Jember, Indonesia

Scientific Committee and Reviewers

Joe Ryan University of Newcastle, Australia
Kinkar Chandra Das Sungkyunkwan University, Republic of Korea
Octavio Paulo Vera Villagran University of Bio-Bio, Chile
Ali Ahmad Jazan University, Saudi Arabia
Roslan Hasni Universiti Malaysia Terengganu, Malaysia
Kiki A. Sugeng University of Indonesia, Indonesia
Rinovia Simajuntak Institut Teknologi Bandung, Indonesia
Hilda Assiyatun Institut Teknologi Bandung, Indonesia
Liliek Susilowati Universitas Airlangga, Indonesia
Diary Indriati Universitas Sebelas Maret, Indonesia
Syaiful Bukhori University of Jember, Indonesia
Antonius Cahya Prihandoko University of Jember, Indonesia
Bambang Sujanarko University of Jember, Indonesia
Khairul Anam University of Jember, Indonesia

The committees of the First International Conference on Combinatorics, Graph Theory and Network Topology would like to express gratitude to all Committees for the volunteering support and contribution in the editing and reviewing process.

Digital Repository Universitas Jember

Digital Repository Universitas Jember

Journal of Physics: Conference Series 。

This website uses cookies to ensure you get the best experience on our website

PAPER • OPEN ACCESS

On the locating domination number of corona product

To cite this article: Risan Nur Santi et al 2018 J. Phys.: Conf. Ser. 1008012053

View the article online for updates and enhancements.

Related content

On the locating domination number of $\mathrm{P} n$ [trianglerightequal] H graph Dwi Agustin Retno Wardani, Ika Hesti Agustin, Dafik et al.

- Locating domination number of m shadowing of graphs Dafik, Ika Hesti Agustin, Ermita Rizki Albirri et al.
- Domination Number of Vertex

Amalgamation of Graphs Y Wahyuni, M I Utoyo and Slamin

On the locating domination number of corona product

Risan Nur Santi ${ }^{1,2}$, Ika Hesti Agustin ${ }^{1,2}$, Dafik 1,3, Ridho Alfarisi ${ }^{1,4}$
${ }^{1}$ CGANT - University of Jember
${ }^{2}$ Department of Mathematics, University of Jember, Jember, Indonesia
${ }^{3}$ Department of Mathematics Education, University of Jember, Jember, Indonesia
${ }^{4}$ Department of Elementary School Teacher Education, University of Jember, Jember, Indonesia
E-mail: rissn.nursanti@gmail.com, ikahestiagustin@gmail.com, d.dafik@unej.ac.id, alfarisi38@gmail.com

Abstract

Let $G=(V(G), E(G)$ be a connected graph and $v \epsilon V(G)$. A dominating set for a graph $G=(V, E)$ is a subset D of V such that every vertex not in D is adjacent to at least one member of D. The domination number $\gamma(G)$ is the number of vertices in a smallest dominating set for G. Vertex set S in graph $G=(V, E)$ is a locating dominating set if for each pair of distinct vertices u and v in $V(G)-S$ we have $N(u) \cap S \neq \phi, N(v) \cap S \neq \phi$, and $N(u) \cap S \neq N(v) \cap S$, that is each vertex outside of S is adjacent to a distinct, nonempty subset of the elements of S. In this paper, we characterize the locating dominating sets in the corona product of graphs namely path, cycle, star, wheel, and fan graph.

Keywords : Locating dominating sets, dominating sets, locating dominating number, corona product

1. Introduction

Locating dominating set a natural expansion of dominating set. Historically, dominating set has been studied from the 1960 and developed in the 1970. Foucaud (2016) mention locating dominating set was first introduced and studied by Slater in 1987 [2,3]. Dominating set is a concept of determining a vertex set on a graph, where the vertex that has a condition can dominate the point around it, and the cardinality of members of set should be minimum. Minimum cardinality of the set dominance is called the domination number denoted by $\gamma[1,4]$.

According to Haynes and Henning, the set D from vertex of a simple graph G is called dominating set if every vertex $u \in V(G)-D$ adjacent on some vertex $v \in D[9,10,11,12]$. Let a directed graph not $G=(V, E)$, dominating set is a subset of $S \subseteq V$ of vertex at G, for all vertex $v \in V$ one of $v \in S$ or a neighbor from s ie u is at $S[7,8]$.

A vertex set of graph $G=(V, E)$ is locating dominating set, if set of vertex dominator denoted by D qualifies that any vertex other than D, that is $V-D$ have different intersection with D. Let V be the vertex and E is the edge set of graph G so $\{u, v \in V \backslash D\}$ then $N(u) \cap D \neq \emptyset$, $N(v) \cap D \neq \emptyset$, and $N(u) \cap D \neq N(v) \cap D$, where $N(u)$ is vertex neighbors of u and $N(v)$ is vertex neighbors of v. Locating dominating number is the minimum cardinality of the locating dominating set. Locating dominating number is denoted by γ_{L}.

Some definitions used in this study are :
Definition 1.1 Let G be a connected graph with $|V(G)|=p_{1}$ and $|E(G)|=q_{1}$ the graph H is a connected graph that has $|V(H)|=p_{2}$ dan $|E(H)|=q_{2}$. The cardinality of vertex set and edge set at $G \odot H$ respectly are $|V(G \odot H)|=p_{1}\left(p_{2}+1\right)$ and $|E(G \odot H)|=p_{1}\left(p_{2}+q_{2}\right)+q_{1}$.

2. Main Result

In this paper, we have studied locating domination number of some corona product. The results of this research, we found several lemma, theorem, and corollary about the locating domination number of corona products.

Lemma 2.1 Let G and H be a connected graph, the locating domination number of $G \odot H$ is $\gamma_{L}(G \odot H) \geq|V(G)| \cdot \gamma_{L}(H)$.

Proof. The corona products of G and H denoted by $G \odot H$ is a connected graph with the cardinality of vertex set and edge set respectively are $|V(G \odot H)|=|V(G)| \cdot(|V(H)|+1)$ and $|E(G \odot H)|=|V(G)| \cdot(|V(H)|+|E(H)|)+|E(V)|$.

We prove that the lower bound of locating domination number is $\gamma_{L}(G \odot H) \geq|V(G)| \cdot \gamma_{L}(H)$. Based on definition of the corona graph, the graph $G \odot H$ has subgraph H as much as $|V(G)|$. If the vertex dominator on the subgraph H, that is $\gamma_{L}\left(H_{1}\right)=\gamma_{L}\left(H_{2}\right)=\gamma_{L}\left(H_{3}\right)=\ldots=$ $\gamma_{L}\left(H_{|V(G)|}\right)$, then $\gamma_{L}(G \odot H) \geq \gamma_{L}\left(H_{1}\right)+\gamma_{L}\left(H_{2}\right)+\gamma_{L}\left(H_{3}\right)+\ldots+\gamma_{L}\left(H_{|V(G)|}\right)$. It concludes that $\gamma_{L}(G \odot H) \geq|V(G)| \cdot \gamma_{L}(H)$.

Theorem 2.2 For $n \geq 4$, the locating domination number of $G \odot C_{n}$ is $\gamma_{L}\left(G \odot C_{n}\right)=$ $|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$.

Proof. Corona products of G and cyle graph C_{n} denoted by $G \odot C_{n}$ is a connected graph with the cardinality of vertex set and edge set respectively are $\left|V\left(G \odot C_{n}\right)\right|=|V(G)|(n+1)$ and $\left|E\left(G \odot C_{n}\right)\right|=n(|V(G)|+|E(G)|+1)$.

Based on Lemma 2.1, lower bound of locating domination number $G \odot C_{n}$ is $\gamma_{L}\left(G \odot C_{n}\right) \geq$ $|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$. However we can attain sharpest lower bound. Forthemore, we prove the upper bound of locating domination number is $\gamma_{L}\left(G \odot C_{n}\right) \leq|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$. We determine vertex dominator of $G \odot C_{n}$ on the subgraph C_{n}, that is $D=\left\{x_{i j} ; 1 \leq i \leq|V(G)| ; 1 \leq j \leq\left\lceil\frac{2 n}{5}\right\rceil\right\}$, so $|D|=|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$. The neighbors of $V-D=\left\{x_{i}, x_{i j} ; 1 \leq i \leq|V(G)| ; 1 \leq j \leq n-\left\lceil\frac{2 n}{5}\right\rceil\right\}$ has different intersection sets with D, it is $N\left(x_{i(5 k)}\right) \cap D=\left\{x_{i(5 k-1)}, x_{i(5 k+1)}\right\}, N\left(x_{i(5 k-2)}\right) \cap D=$ $\left\{x_{i(5 k-1)}\right\}, N\left(x_{i(5 k-3)}\right) \cap D=\left\{x_{i(5 k-4)}\right\}, N\left(x_{i}\right) \cap D=\left\{x_{i j} ; j \equiv 1 \bmod 5 ; j \equiv 4 \bmod 5\right\}$.

It is easy to see that $\left.\gamma_{(} G \odot C_{n}\right)$ meet $\left.\gamma_{(} G \odot C_{n}\right) \leq|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$. Therefore upper bound is $\left.\gamma_{(} G \odot C_{n}\right) \leq|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$. It concludes that $\left.\gamma_{(} G \odot C_{n}\right)=|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$.

For the illustration of the locating domination number of $G \odot C_{4}$ can be seen in Figure 1, we mark the vertex is the vertex dominator of locating dominating set. $G \odot$ C_{4} has vertex dominator $D=\left\{x_{i j} ; 1 \leq i \leq|V(G)| ; 1 \leq j \leq n\right\}$ is that $D=$ $\left\{x_{12}, x_{13}, x_{22}, x_{23}, \ldots, x_{|V(G)| 2}, x_{|V(G)| 3}\right\}$ and another vertex which is not vertex dominator $(V-D)=\left\{x_{11}, x_{14}, x_{21}, x_{24}, \ldots, x_{p_{1} 1}, x_{p_{1} 4}, x_{1}, x_{2}, x_{3}, \ldots, x_{|V(G)|}\right\}$ has different neighbors in D, that is $N\left(x_{11}\right) \cap D=\left\{x_{12}\right\}, N\left(x_{14}\right) \cap D=\left\{x_{13}\right\}, N\left(x_{21}\right) \cap D=\left\{x_{22}\right\}, N\left(x_{21}\right) \cap D=$ $\left\{x_{22}\right\}, N\left(x_{24}\right) \cap D=\left\{x_{23}\right\}, \ldots, N\left(x_{p_{1} 1}\right) \cap D=\left\{x_{|V(G)| 2}\right\}, N\left(x_{|V(G)| 4}\right) \cap D=\left\{x_{|V(G)| 3}\right\}, N\left(x_{1}\right) \cap$ $D=\left\{x_{12}, x_{13}\right\}, N\left(x_{2}\right) \cap D=\left\{x_{22}, x_{23}\right\}, \ldots, N\left(x_{|V(G)|}\right) \cap D=\left\{x_{|V(G)| 2}, x_{|V(G)| 3}\right\}$. It is easy to see $N(u, v) \cap D \neq \emptyset$ and $N(u) \cap D \neq N(v) \cap D$. It is concludes that $\gamma_{L}\left(G \odot C_{4}\right)=2|V(G)|$.

Figure 1. Locating domination number of $G \odot C_{4}$ is $2 \cdot|V(G)|$
The corollary of theorem :
Corollary 2.3 For $n \geq 3$ and $m \geq 4$, the locating domination number of $P_{n} \odot C_{m}$ is $\gamma_{L}\left(P_{n} \odot C_{m}\right)=n \cdot\left\lceil\frac{2 m}{5}\right\rceil$.
Corollary 2.4 For $n \geq 3$ and $m \geq 4$, the locating domination number of $C_{n} \odot C_{m}$ is $\gamma_{L}\left(C_{n} \odot C_{m}\right)=n \cdot\left\lceil\frac{2 m}{5}\right\rceil$.
Corollary 2.5 For $n \geq 3$ and $m \geq 4$, the locating domination number of $S_{n} \odot C_{m}$ is $\gamma_{L}\left(S_{n} \odot C_{m}\right)=(n+1) \cdot\left\lceil\frac{2 m}{5}\right\rceil$.
Corollary 2.6 For $n \geq 3$ and $m \geq 4$, the locating domination number of $W_{n} \odot C_{m}$ is $\gamma_{L}\left(W_{n} \odot C_{m}\right)=(n+1) \cdot\left\lceil\frac{2 m}{5}\right\rceil$.

Corollary 2.7 For $n \geq 3$ and $m \geq 4$, the locating domination number of $F_{n} \odot C_{m}$ is $\gamma_{L}\left(F_{n} \odot C_{m}\right)=(n+1) \cdot\left\lceil\frac{2 m}{5}\right\rceil$.
Theorem 2.8 For $n \geq 3$, the locating domination number of $G \odot P_{n}$ is $\gamma_{L}\left(G \odot P_{n}\right)=$ $|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$.

Proof. Corona products of G and path graph P_{n} denoted by $G \odot P_{n}$ is a connected graph with the cardinality of vertex set and edge set respectively are $\left|V\left(G \odot P_{n}\right)\right|=|V(G)|(n+1)$ and $\left|E\left(G \odot P_{n}\right)\right|=n(|V(G)|+|E(G)|+1)$.

Based on Lemma 2.1, lower bound of locating domination number $G \odot P_{n}$ is $\gamma_{L}\left(G \odot P_{n}\right) \geq$ $|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$. However we can attain sharpest lower bound. Forthemore, we prove the upper bound of locating domination number is $\gamma_{L}\left(G \odot P_{n}\right) \leq|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$. We determine vertex dominator of $G \odot P_{n}$ on the subgraph P_{n}, that is $D=\left\{x_{i j} ; 1 \leq i \leq|V(G)| ; 1 \leq j \leq\left\lceil\frac{2 n}{5}\right\rceil\right\}$, so $|D|=|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$. The next, we will show that the neighbors of $V-D=\left\{x_{i}, x_{i j} ; 1 \leq\right.$ $\left.i \leq|V(G)| ; 1 \leq j \leq n-\left\lceil\frac{2 n}{5}\right\rceil\right\}$ has different intersection sets with D, it is $N\left(x_{i(5 k)}\right) \cap D=$ $\left\{x_{i(5 k-1)}, x_{i(5 k+1)}\right\}, N\left(x_{i(5 k-2)}\right) \cap D=\left\{x_{i(5 k-1)}\right\}, N\left(x_{i(5 k-3)}\right) \cap D=\left\{x_{i(5 k-4)}\right\}, N\left(x_{i}\right) \cap D=$ $\left\{x_{i j} ; j \equiv 1 \bmod 5 ; j \equiv 4 \bmod 5\right\}$.

It is easy to see that $\left.\gamma_{(} G \odot P_{n}\right)$ meet $\left.\gamma_{(} G \odot P_{n}\right) \leq|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$. Therefore upper bound is $\left.\gamma_{(} G \odot P_{n}\right) \leq|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$. It concludes that $\left.\gamma_{(} G \odot P_{n}\right)=|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$.

For the illustration of the locating domination number of $G \odot P_{4}$ can be seen in Figure 2, we mark the vertex is the vertex dominator of locating dominating set. $G \odot$ P_{4} has vertex dominator $D=\left\{x_{i j} ; 1 \leq i \leq|V(G)| ; 1 \leq j \leq n\right\}$ is that $D=$ $\left\{x_{12}, x_{13}, x_{22}, x_{23}, \ldots, x_{|V(G)| 2}, x_{|V(G)| 3}\right\}$ and another vertex which is not vertex dominator $(V-D)=\left\{x_{11}, x_{14}, x_{21}, x_{24}, \ldots, x_{p_{1} 1}, x_{p_{1} 4}, x_{1}, x_{2}, x_{3}, \ldots, x_{|V(G)|}\right\}$ has different neighbors in D, that is $N\left(x_{11}\right) \cap D=\left\{x_{12}\right\}, N\left(x_{14}\right) \cap D=\left\{x_{13}\right\}, N\left(x_{21}\right) \cap D=\left\{x_{22}\right\}, N\left(x_{21}\right) \cap D=$ $\left\{x_{22}\right\}, N\left(x_{24}\right) \cap D=\left\{x_{23}\right\}, \ldots, N\left(x_{p_{1} 1}\right) \cap D=\left\{x_{|V(G)| 2}\right\}, N\left(x_{|V(G)| 4}\right) \cap D=\left\{x_{|V(G)| 3}\right\}, N\left(x_{1}\right) \cap$

Figure 2. Locating domination number of $G \odot P_{4}$ is $2 \cdot|V(G)|$
$D=\left\{x_{12}, x_{13}\right\}, N\left(x_{2}\right) \cap D=\left\{x_{22}, x_{23}\right\}, \ldots, N\left(x_{|V(G)|}\right) \cap D=\left\{x_{|V(G)| 2}, x_{|V(G)| 3}\right\}$. It is easy to see $N(u, v) \cap D \neq \emptyset$ and $N(u) \cap D \neq N(v) \cap D$. It is concludes that $\gamma_{L}\left(G \odot P_{4}\right)=2|V(G)|$.

The corollary of theorem :
Corollary 2.9 For $n \geq 3$ and $m \geq 4$, the locating domination number of $P_{n} \odot P_{m}$ is $\gamma_{L}\left(P_{n} \odot P_{m}\right)=n \cdot\left\lceil\frac{2 m}{5}\right\rceil$.

Corollary 2.10 For $n \geq 3$ and $m \geq 4$, the locating domination number of $C_{n} \odot P_{m}$ is $\gamma_{L}\left(C_{n} \odot P_{m}\right)=n \cdot\left\lceil\frac{2 m}{5}\right\rceil$.
Corollary 2.11 For $n \geq 3$ and $m \geq 4$, the locating domination number of $S_{n} \odot P_{m}$ is $\gamma_{L}\left(S_{n} \odot P_{m}\right)=(n+1) \cdot\left\lceil\frac{2 m}{5}\right\rceil$.

Corollary 2.12 For $n \geq 3$ and $m \geq 4$, the locating domination number of $W_{n} \odot P_{m}$. is $\gamma_{L}\left(W_{n} \odot P_{m}\right)=(n+1) \cdot\left\lceil\frac{2 m}{5}\right\rceil$.

Corollary 2.13 For $n \geq 3$ and $m \geq 4$, the locating domination number of $F_{n} \odot P_{m}$ is $\gamma_{L}\left(F_{n} \odot P_{m}\right)=(n+1) \cdot\left\lceil\frac{2 m}{5}\right\rceil$.

Lemma 2.14 Let G and H be a connected graph, the locating domination number of $G \odot H$ is $\gamma_{L}(G \odot H) \leq \gamma(G)+|V(G)| \cdot \gamma_{L}(H)$.

Proof. The corona products of G and H denoted by $G \odot H$ is a connected graph with the cardinality of vertex set and edge set respectively are $|V(G \odot H)|=|V(G)| \cdot(|V(H)|+1)$ and edge's cardinality $|E(G \odot H)|=|V(G)| \cdot(|V(H)|+|E(H)|)+|E(V)|$.

We prove that the upper bound of locating domination number is $\gamma_{L}(G \odot H) \leq \gamma(G)+$ $|V(G)| \cdot \gamma_{L}(H)$. Based on definition of the corona graph, every $G \odot H$ has subgraph H as much as $|V(G)|$. If the vertex dominator on the subgraph G that is $\gamma(G)$ and on the subgraph H that is $\gamma_{L}\left(H_{1}\right)=\gamma_{L}\left(H_{2}\right)=\gamma_{L}\left(H_{3}\right)=\ldots=\gamma_{L}\left(H_{|V(G)|}\right)$, then $\gamma_{L}(G \odot H) \geq \gamma_{L}\left(H_{1}\right)+\gamma_{L}\left(H_{2}\right)+$ $\gamma_{L}\left(H_{3}\right)+\ldots+\gamma_{L}\left(H_{|V(G)|}+\gamma(G)\right)$. It concludes that $\gamma_{L}(G \odot H) \leq \gamma(G)+|V(G)| \cdot \gamma_{L}(H)$.

Theorem 2.15 For $n \geq 4$, the locating domination number of $G \odot S_{n}$ is $\gamma_{L}\left(G \odot S_{n}\right)=$ $\gamma(G)+|V(G)| \cdot n$.

Proof. Corona products of G and path graph S_{n} denoted by $G \odot S_{n}$ is a connected graph with the cardinality of vertex set and edge set respectively are $\left|V\left(G \odot S_{n}\right)\right|=|V(G)| \cdot(n+2)$ and $\left|E\left(G \odot S_{n}\right)\right|=|V(G)| \cdot(2 n+1)+|E(G)|$.

Based on Lemma 2.2, upper bound of locating domination number $G \odot S_{n}$ is $\gamma_{L}\left(G \odot S_{n}\right) \geq$ $\gamma(G)+|V(G)| \cdot n$. However we can attain sharpest lower bound. Forthemore, we prove the lower
bound of locating domination number is $\gamma_{L}\left(G \odot S_{n}\right) \geq \gamma(G)+|V(G)| \cdot n$. We determine set of vertex dominator of $G \odot S_{n}$ on the subgraph G, that is $D=\left\{x_{i} ; 1 \leq i \leq \gamma(G)\right\}$ and on the subgraph S_{n}, that is $D=\left\{x_{i j} ; 1 \leq i \leq|V(G)| ; 1 \leq j \leq n\right\}$ so $|D|=\gamma(G)+|V(G)| \cdot n$. The next, we will show that the neighbors of $V-D=\left\{x_{i}, x_{i j} ; 1 \leq i \leq|V(G)| ; j=n+1\right\}$ has different intersection sets with D, it is $N\left(x_{i(n+1)}\right) \cap D=\left\{x_{i 1}, x_{i 2}, \ldots, x_{i n} ; 1 \leq i \leq n\right\}, N\left(x_{i}\right) \cap D=$ $\left\{x_{i 1}, x_{i 2}, \ldots, x_{i n}, \gamma(G) ; 1 \leq i \leq n\right\}$.

It is easy to see that $\gamma_{(} G \odot S_{n}$) meet $\gamma_{L}\left(G \odot S_{n}\right) \geq \gamma(G)+|V(G)| \cdot n$. Therefore lower bound is $\gamma_{L}\left(G \odot S_{n}\right) \geq \gamma(G)+|V(G)| \cdot n$. It concludes that $\gamma_{L}\left(G \odot S_{n}\right)=\gamma(G)+|V(G)| \cdot n$.

For the illustration of the locating domination number of $G \odot S_{4}$ can be seen in Figure 3 , we mark the vertex is the vertex dominator of locating dominating set. $G \odot$ S_{4} has vertex dominator $D=\left\{x_{i} ; x_{i j} ; 1 \leq i \leq|V(G)| ; 1 \leq j \leq n\right\}$ is that $D=\left\{x_{11}, x_{12}, x_{13}, x_{14}, x_{21}, x_{12}, x_{23}, x_{24}, \ldots, x_{p_{1} 1}, x_{p_{1} 2}, x_{p_{1} 3}, x_{p_{1} 4}\right\}$ and another vertex which is not vertex dominator $(V-D)=\left\{x_{15}, x_{25}, \ldots, x_{p_{1} 5}, \gamma(G)\right\}$ has different neighbors in D, that is $N\left(x_{15}\right) \cap D=\left\{x_{11}, x_{12}, x_{13}, x_{14}\right\}, N\left(x_{25}\right) \cap D=\left\{x_{21}, x_{22}, x_{23}, x_{24}\right\}, \ldots, N\left(x_{p_{1} 5}\right) \cap$ $D=\left\{x_{p_{1} 1}, x_{p_{1} 2}, x_{p_{1} 3}, x_{p_{1} 4}\right\}, N\left(x_{1}\right) \cap D=\left\{x_{11}, x_{12}, x_{13}, x_{14}, \gamma(G)\right\}, N\left(x_{2}\right) \cap D=$ $\left\{x_{21}, x_{22}, x_{23}, x_{24}, \gamma(G)\right\}, \ldots, N\left(x_{p_{1}}\right) \cap D=\left\{x_{p_{1} 1}, x_{p_{1} 2}, x_{p_{1} 3}, x_{p_{1} 4}, \gamma(G)\right\}$. It is easy to see $N(u, v) \cap D \neq \emptyset$ and $N(u) \cap D \neq N(v) \cap D$. It is concludes that $\gamma_{L}\left(G \odot S_{4}\right)=\gamma(G)+4|V(G)|$.

Figure 3. Locating domination number of $G \odot S_{4}$ is $\gamma(G)+4 \cdot|V(G)|$
The corollary of theorem :
Corollary 2.16 For $n \geq 3$ and $m \geq 4$, the locating domination number of $P_{n} \odot S_{m}$ is $\gamma_{L}\left(P_{n} \odot S_{m}\right)=\gamma(G)+n \cdot m$.

Corollary 2.17 For $n \geq 3$ and $m \geq 4$, the locating domination number of $C_{n} \odot S_{m}$ is $\gamma_{L}\left(C_{n} \odot S_{m}\right)=\gamma(G)+n \cdot m$.

Corollary 2.18 For $n \geq 3$ and $m \geq 4$, the locating domination number of $S_{n} \odot S_{m}$ is $\gamma_{L}\left(S_{n} \odot S_{m}\right)=\gamma(G)+(n+1) \cdot m$.

Corollary 2.19 For $n \geq 3$ and $m \geq$, the locating domination number of $W_{n} \odot S_{m}$ is $\gamma_{L}\left(W_{n} \odot S_{m}\right)=\gamma(G)+(n+1) \cdot m$.

Corollary 2.20 For $n \geq 3$ and $m \geq 4$, the locating domination number of $F_{n} \odot S_{m}$ is $\gamma_{L}\left(F_{n} \odot S_{m}\right)=\gamma(G)+(n+1) \cdot m$.

Theorem 2.21 For $n \geq 4$, the locating domination number of $G \odot W_{n}$ is $\gamma_{L}\left(G \odot W_{n}\right)=$ $\gamma(G)+|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$.

Proof. Corona products of G and path graph W_{n} denoted by $G \odot W_{n}$ is a connected graph with the cardinality of vertex set and edge set respectively are $\left|V\left(G \odot W_{n}\right)\right|=p_{1}(n+2)$ and $\left|E\left(G \odot W_{n}\right)\right|=3 n p_{1}+q_{1}$.

Based on Lemma 2.2, upper bound of locating domination number $G \odot W_{n}$ is $\gamma_{L}\left(G \odot W_{n}\right) \geq$ $\gamma(G)+|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$. However we can attain sharpest lower bound. Forthemore, we prove the lower bound of locating domination number is $\gamma_{L}\left(G \odot W_{n}\right) \geq \gamma(G)+|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$. We determine set of vertex dominator of $G \odot S_{n}$ on the subgraph G, that is $D=\left\{x_{i} ; 1 \leq i \leq \gamma(G)\right\}$ and on the subgraph S_{n}, that is $D=\left\{x_{i j} ; 1 \leq i \leq|V(G)| ; 1 \leq j \leq\left\lceil\frac{2 n}{5}\right\rceil\right\}$ so $|D|=\gamma(G)+|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$. The next, we will show that the neighbors of $V-D=\left\{x_{i}, x_{i j} ; 1 \leq i \leq|V(G)| ; 1 \leq j \leq(n+1)-\left\lceil\frac{2 n}{5}\right\rceil\right\}$ has different intersection sets with D, it is $N\left(x_{i(5 k)}\right) \cap D=\left\{x_{i(5 k-1)}, x_{i(5 k+1)}\right\}, N\left(x_{i(5 k-2)}\right) \cap$ $D=\left\{x_{i(5 k-1)}\right\}, N\left(x_{i(5 k-3)}\right) \cap D=\left\{x_{i(5 k-4)}\right\}, N\left(x_{i(n+1)}\right) \cap D=\left\{x_{i(5 k-4)}, x_{i(5 k-1)} ; 1 \leq k \leq\right.$ $\lceil n\rceil\}, N\left(x_{i}\right) \cap D=\left\{x_{i j}, \gamma(G) ; j \equiv 1 \bmod 5 ; j \equiv 4 \bmod 5\right\}$.

It is easy to see that $\left.\gamma_{(} G \odot W_{n}\right)$ meet $\gamma_{L}\left(G \odot W_{n}\right) \geq \gamma(G)+|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$. Therefore lower bound is $\gamma_{L}\left(G \odot W_{n}\right) \geq \gamma(G)+|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$. It concludes that $\gamma_{L}\left(G \odot W_{n}\right)=\gamma(G)+|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$.

For the illustration of the locating domination number of $G \odot W_{4}$ can be seen in Figure 4, we mark the vertex is the vertex dominator of locating dominating set. $G \odot$ W_{4} has vertex dominator $D=\left\{x_{i} ; x_{i j} ; 1 \leq i \leq|V(G)| ; 1 \leq j \leq n\right\}$ is that $D=$ $\left\{x_{11}, x_{14}, x_{21}, x_{24}, \ldots, x_{|V(G)| 1}, x_{|V(G)| 4}\right\}$ and another vertex which is not vertex dominator $(V-D)=\left\{x_{12}, x_{13}, x_{15}, x_{22}, x_{23}, x_{25}, \ldots, x_{|V(G)| 2}, x_{|V(G)| 3}, x_{|V(G)| 5}, x_{1}, x_{2}, x_{3}, \ldots, x_{|V(G)|}\right\}$ has different neighbors in D, that is $N\left(x_{12}\right) \cap D=\left\{x_{11}\right\}, N\left(x_{13}\right) \cap D=\left\{x_{14}\right\}, N\left(x_{15}\right) \cap D=$ $\left\{x_{11}, x_{14}\right\}, N\left(x_{22}\right) \cap D=\left\{x_{21}\right\}, N\left(x_{23}\right) \cap D=\left\{x_{24}\right\}, N\left(x_{25}\right) \cap D=\left\{x_{21}, x_{24}\right\}, \ldots, N\left(x_{|V(G)| 2}\right) \cap$ $D=\left\{x_{|V(G)| 1}\right\}, N\left(x_{|V(G)| 3}\right) \cap D=\left\{x_{|V(G)| 4}\right\}, N\left(x_{|V(G)| 5}\right) \cap D=\left\{x_{|V(G)| 1}, x_{|V(G)| 4}\right\}, N\left(x_{1}\right) \cap D=$ $\left\{x_{11}, x_{14}, \gamma(G)\right\}, N\left(x_{2}\right) \cap D=\left\{x_{21}, x_{24}, \gamma(G)\right\}, \ldots, N\left(x_{|V(G)|}\right) \cap D=\left\{x_{|V(G)| 1}, x_{|V(G)| 4}, \gamma(G)\right\}$. It is easy to see $N(u, v) \cap D \neq \emptyset$ and $N(u) \cap D \neq N(v) \cap D$. It is concludes that $\gamma_{L}\left(G \odot W_{4}\right)=\gamma(G)+2|V(G)|$.

The corollary of theorem :
Corollary 2.22 For $n \geq 3$ and $m \geq 4$, the locating domination number of $P_{n} \odot W_{m}$ is $\gamma_{L}\left(P_{n} \odot W_{m}\right)=\gamma(G)+n \cdot\left\lceil\frac{2 m}{5}\right\rceil$.

Corollary 2.23 For $n \geq 3$ and $m \geq$, the locating domination number of $C_{n} \odot W_{m}$ is $\gamma_{L}\left(C_{n} \odot W_{m}\right)=\gamma(G)+n \cdot\left\lceil\frac{2 m}{5}\right\rceil$.

Corollary 2.24 For $n \geq 3$ and $m \geq 4$, the locating domination number of $S_{n} \odot W_{m}$ is $\gamma_{L}\left(S_{n} \odot W_{m}\right)=\gamma(G)+(n+1) \cdot\left\lceil\frac{2 m}{5}\right\rceil$.
Corollary 2.25 For $n \geq 3$ and $m \geq 4$, the locating domination number of $W_{n} \odot W_{m}$. is $\gamma_{L}\left(W_{n} \odot W_{m}\right)=\gamma(G)+(n+1) \cdot\left\lceil\frac{2 m}{5}\right\rceil$.

Corollary 2.26 For $n \geq 3$ and $m \geq 4$, the locating domination number of $F_{n} \odot W_{m}$ is $\gamma_{L}\left(F_{n} \odot W_{m}\right)=\gamma(G)+(n+1) \cdot\left\lceil\frac{2 m}{5}\right\rceil$.

Figure 4. Locating domination number of $G \odot W_{4}$ is $\gamma(G)+2 \cdot|V(G)|$

Theorem 2.27 For $n \geq$, the locating domination number of $G \odot F_{n}$ is $\gamma_{L}\left(G \odot F_{n}\right)=$ $\gamma(G)+|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$.

Proof. Corona products of G and path graph F_{n} denoted by $G \odot F_{n}$ is a connected graph with the cardinality of vertex set and edge set respectively are $\left|V\left(G \odot F_{n}\right)\right|=p_{1}(n+2)$ and $\left|E\left(G \odot F_{n}\right)\right|=2 n p_{1}+q_{1}$.

Based on Lemma 2.2, upper bound of locating domination number $G \odot W_{n}$ is $\gamma_{L}\left(G \odot F_{n}\right) \geq$ $\gamma(G)+|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$. However we can attain sharpest lower bound. Forthemore, we prove the lower bound of locating domination number is $\gamma_{L}\left(G \odot F_{n}\right) \geq \gamma(G)+|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$. We determine vertex dominator of $G \odot F_{n}$ on the subgraph G, that is $D=\left\{x_{i} ; 1 \leq i \leq \gamma(G)\right\}$ and on the subgraph F_{n}, that is $D=\left\{x_{i j} ; 1 \leq i \leq|V(G)| ; 1 \leq j \leq\left\lceil\frac{2 n}{5}\right\rceil\right\}$ so $|D|=\gamma(G)+|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$. The next, we will show that the neighbors of $V-D=\left\{x_{i}, x_{i j} ; 1 \leq i \leq|V(G)| ; 1 \leq j \leq(n+1)-\left\lceil\frac{2 n}{5}\right\rceil\right\}$ has different intersection sets with D, it is $N\left(x_{i(5 k)}\right) \cap D=\left\{x_{i(5 k-1)}, x_{i(5 k+1)}\right\}, N\left(x_{i(5 k-2)}\right) \cap$ $D=\left\{x_{i(5 k-1)}\right\}, N\left(x_{i(5 k-3)}\right) \cap D=\left\{x_{i(5 k-4)}\right\}, N\left(x_{i(n+1)}\right) \cap D=\left\{x_{i(5 k-4)}, x_{i(5 k-1)} ; 1 \leq k \leq\right.$ $\lceil n\rceil\}, N\left(x_{i}\right) \cap D=\left\{x_{i j}, \gamma(G) ; j \equiv 1 \bmod 5 ; j \equiv 4 \bmod 5\right\}$.

It is easy to see that $\left.\gamma_{(} G \odot F_{n}\right)$ meet $\gamma_{L}\left(G \odot F_{n}\right) \geq \gamma(G)+|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$. Therefore lower bound is $\gamma_{L}\left(G \odot F_{n}\right) \geq \gamma(G)+|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$. It concludes that $\gamma_{L}\left(G \odot F_{n}\right)=\gamma(G)+|V(G)| \cdot\left\lceil\frac{2 n}{5}\right\rceil$.

For the illustration of the locating domination number of $G \odot F_{4}$ can be seen in Figure 5, we mark the vertex is the vertex dominator of locating dominating set. $G \odot$ F_{4} has vertex dominator $D=\left\{x_{i} ; x_{i j} ; 1 \leq i \leq|V(G)| ; 1 \leq j \leq n\right\}$ is that $D=$ $\left\{x_{11}, x_{14}, x_{21}, x_{24}, \ldots, x_{|V(G)| 1}, x_{|V(G)| 4}\right\}$ and another vertex which is not vertex dominator $(V-D)=\left\{x_{12}, x_{13}, x_{15}, x_{22}, x_{23}, x_{25}, \ldots, x_{|V(G)| 2}, x_{|V(G)| 3}, x_{|V(G)| 5}, x_{1}, x_{2}, x_{3}, \ldots, x_{|V(G)|}\right\}$ has different neighbors in D, that is $N\left(x_{12}\right) \cap D=\left\{x_{11}\right\}, N\left(x_{13}\right) \cap D=\left\{x_{14}\right\}, N\left(x_{15}\right) \cap D=$ $\left\{x_{11}, x_{14}\right\}, N\left(x_{22}\right) \cap D=\left\{x_{21}\right\}, N\left(x_{23}\right) \cap D=\left\{x_{24}\right\}, N\left(x_{25}\right) \cap D=\left\{x_{21}, x_{24}\right\}, \ldots, N\left(x_{|V(G)| 2}\right) \cap$ $D=\left\{x_{|V(G)| 1}\right\}, N\left(x_{|V(G)| 3}\right) \cap D=\left\{x_{|V(G)| 4}\right\}, N\left(x_{|V(G)| 5}\right) \cap D=\left\{x_{|V(G)| 1}, x_{|V(G)| 4}\right\}, N\left(x_{1}\right) \cap D=$
$\left\{x_{11}, x_{14}, \gamma(G)\right\}, N\left(x_{2}\right) \cap D=\left\{x_{21}, x_{24}, \gamma(G)\right\}, \ldots, N\left(x_{|V(G)|}\right) \cap D=\left\{x_{|V(G)| 1}, x_{|V(G)| 4}, \gamma(G)\right\}$. It is easy to see $N(u, v) \cap D \neq \emptyset$ and $N(u) \cap D \neq N(v) \cap D$. It is concludes that $\gamma_{L}\left(G \odot F_{4}\right)=\gamma(G)+2|V(G)|$.

Figure 5. Locating domination number of $G \odot F_{4}$ is $\gamma(G)+2 \cdot|V(G)|$
The corollary of theorem :
Corollary 2.28 For $n \geq 3$ and $m \geq 4$, the locating domination number of $P_{n} \odot F_{m}$ is $\gamma_{L}\left(P_{n} \odot F_{m}\right)=\gamma(G)+n \cdot\left\lceil\frac{2 m}{5}\right\rceil$.

Corollary 2.29 For $n \geq 3$ and $m \geq 4$, the locating domination number of $C_{n} \odot F_{m}$ is $\gamma_{L}\left(C_{n} \odot F_{m}\right)=\gamma(G)+n \cdot\left\lceil\frac{2 m}{5}\right\rceil$.
Corollary 2.30 For $n \geq 3$ and $m \geq 4$, the locating domination number of $S_{n} \odot F_{m}$ is $\gamma_{L}\left(S_{n} \odot F_{m}\right)=\gamma(G)+(n+1) \cdot\left\lceil\frac{2 m}{5}\right\rceil$.
Corollary 2.31 For $n \geq 3$ and $m \geq 4$, the locating domination number of $W_{n} \odot F_{m}$. is $\gamma_{L}\left(W_{n} \odot F_{m}\right)=\gamma(G)+(n+1) \cdot\left\lceil\frac{2 m}{5}\right\rceil$.
Corollary 2.32 For $n \geq 3$ and $m \geq 4$, the locating domination number of $F_{n} \odot F_{m}$ is $\gamma_{L}\left(F_{n} \odot F_{m}\right)=\gamma(G)+(n+1) \cdot\left\lceil\frac{2 m}{5}\right\rceil$.

3. Conclusion

Based on the results of the above research, then we can conclude the locating domination number of $G \odot H$ is $\gamma_{L}(G \odot H) \geq|V(G)| \cdot \gamma_{L}(H)$ and $G \odot H$ is $\gamma_{L}(G \odot H) \leq \gamma(G)+|V(G)| \cdot \gamma_{L}(H)$.

Open Problem 3.1. Define the locating domination number of the other operations graph

Acknowledgement

We gratefully acknowledge the support from CGANT-University of Jember of year 2018.

References

[1] Dafik,Agustin I H, Fajariyato A, Alfarisi R 2016 On the Rainbow Coloring for Some Graph Operations AIP Conference Proceedings 1707020004
[2] Darmaji, et al 2014 Dominating Set Two Led on Jahangir Graph and Prism Graph Paper Surabaya: ITS
[3] Chartrand G, Zhang P 2008 Chromatic Graph Theory. Chapman and Hall
[4] Gembong A W, Slamin, Dafik, Agustin I H 2017 Bound of Distance Domination Number of Graph and Edge Comb Product Graph Journal of Physics : Conf Series 855(2017)012014
[5] Goddard W, Henning M A 2006 Independent Domination in Graphs: A Survey and Recent Results South African National Research Foundation and The University Of Johannesburg.
[6] Harary F 1969 Graph Teory Wesley Publishing Company,Inc
[7] Hayness T W, Henning M A 2002 Total Domination Good Vertices in Graphs Australasian Journal Of Combinatorics 26 (2002):305-315.
[8] Henning M A, et al 2008 On Matching and Total Domination in Graphs Discrete Mathematics 308 (2008): 2313-2318
[9] Henning M A, Yeo A 2012 Girth and Total Dominating in Graphs Graphs Combin 28 (2012): 199-214
[10] Iswadi H 2011 Lower Up of Matrix Locating Dominating Number on Crown Product Graphs Proceedings of the National Seminar on Mathematics and Mathematics Education 1 vol(1)
[11] Murugesan N, et al 2004 The Domination and Independence of Some Cubic Bipartite Graphs Int J Contemp Math Sciences 613 (2009): 611-618.
[12] Ruan L, et al. 2004. A greedy Approximation for Minimum Connected Dominating Set. Theoretical Computer Science 329 (2004): 325-330.
[13] Snyder K. 2011. C-Dominating Sets for Families of Graphs. University of Mary Washington.
[14] Yannakakis M, Gavril F. 1980. Edge Dominating Sets in Graphs. SIAM Journal on Applied Mathematics, Vol 338, No. 3 (Jun 1980) : 364-372.

