JOURNAL OF PHYSICS: CONFERENCE SERIES

International Conference of

Combinatorics,Graph Theory, and Network Topology (ICCGANT)

Jember,Indonesia
25-26 November 2017

Volume: 1008-2018
ISSN: 17426588

IOP Publishina

PAPER • OPEN ACCESS

The 1st International Conference of Combinatorics, Graph Theory, and Network Topology

To cite this article: 2018 J. Phys.: Conf. Ser. 1008011001

Related content
The Committees of The First International Conference on Combinatorics, Graph Theory and Network Topology (ICCGANT)

Optimization of scheduling system for plant watering using electric cars in agro techno park Nelly Oktavia Adiwijaya, Yudha Herlambang and Slamin

Some Pictures of The 2015 International Conference on Mathematics, its Applications, and Mathematics Education Sudi Mungkasi

View the article online for updates and enhancements.

The First International Conference on Combinatorics, Graph Theory and Network Topology (ICCGANT)

Dafik
Editor in Chief of ICCGANTs Publication, University of Jember, Jember, Indonesia
E-mail: d.dafik@unej.ac.id

Preface

It is with my great pleasure and honor to organize the First International Conference on Combinatorics, Graph Theory and Network Topology which is held from 25-26 November 2017 in the University of Jember, East Java, Indonesia and present a conference proceeding index by Scopus. It is the first international conference organized by CGANT Research Group University of Jember in cooperation with Indonesian Combinatorics Society (INACOBMS). The conference is held to welcome participants from many countries, with broad and diverse research interests of mathematics especially combinatorical study. The mission is to become an annual international forum in the future, where, civil society organization and representative, research students, academics and researchers, scholars, scientist, teachers and practitioners from all over the world could meet in and exchange an idea to share and to discuss theoretical and practical knowledge about mathematics and its applications. The aim of the first conference is to present and discuss the latest research that contributes to the sharing of new theoretical, methodological and empirical knowledge and a better understanding in the area mathematics, application of mathematics as well as mathematics education.

The themes of this conference are as follows: (1) Connection of distance to other graph properties, (2) Degree/diameter problem, (3) Distance-transitive and distance-regular graphs, (4) Metric dimension and related parameters, (5) Cages and eccentric graphs, (6) Cycles and factors in graphs, (7) Large graphs and digraphs, (8) Spectral Techniques in graph theory, (9) Ramsey numbers, (10) Dimensions of graphs, (11) Communication networks, (12) Coding theory, (13) Cryptography, (14) Rainbow connection, (15) Graph labelings and coloring, (16). Applications of graph theory

The topics are not limited to the above themes but they also include the mathematical application research of interest in general including mathematics education, such as:(1) Applied Mathematics and Modelling, (2) Applied Physics: Mathematical Physics, Biological Physics, Chemistry Physics,(3) Applied Engineering: Mathematical Engineering, Mechanical engineering, Informatics Engineering, Civil Engineering,(4) Statistics and Its Application,(5) Pure Mathematics (Analysis, Algebra and Geometry),(6) Mathematics Education, (7) Literacy of Mathematics,(8) The Use of ICT Based Media In Mathematics Teaching and Learning,(9) Technological, Pedagogical, Content Knowledge for Teaching Mathematics, (10) Students Higher Order Thinking Skill of Mathematics, (11) Contextual Teaching and Realistic Mathematics, (12) Science, Technology, Engineering, and Mathematics Approach, (13) Local Wisdom Based

Education: Ethnomathematics, (14) Showcase of Teaching and Learning of Mathematics, (16) The 21st Century Skills: The Integration of 4C Skill in Teaching Math.

The participants of this ICCGANT 2017 conference were 200 people consisting research students, academics and researchers, scholars, scientist, teachers and practitioners from many countries. The selected papers to be publish of Journal of Physics: Conference Series are 80 papers. On behalf of the organizing committee, finally we gratefully acknowledge the support from the University of Jember of this conference. We would also like to extend our thanks to all lovely participants who are joining this unforgettable and valuable event.

Prof. Drs. Dafik, M.Sc., Ph.D.

PAPER • OPEN ACCESS

The Committees of The First International Conference on Combinatorics, Graph Theory and Network Topology (ICCGANT)

Related content

- List of committees
- List of Committees

Committees

To cite this article: 2018 J. Phys.: Conf. Ser. 1008011002

View the article online for updates and enhancements.

The Committees of The First International Conference on Combinatorics, Graph Theory and Network Topology (ICCGANT)

Dafik
Editor in Chief of ICCGANTs Publication, University of Jember, Jember, Indonesia Professor of Combinatorics and Graph Theory
E-mail: d.dafik@unej.ac.id

Advisory Committee

Moch. Hasan Rector of the University of Jember
Zulfikar Vice Rector of the University of Jember
Slamin President of Indonesian Combinatorial Society

Organizing Committee
Dafik Chairperson
Ika Hesti Agustin Secretary

Advisory Editorial Board

Surahmat University of Islam Malang, Indonesia Syafrizal Sy University of Andalas, Indonesia

Editorial Board

Arika Indah Kristiana	University of Jember, Indonesia
Abduh Riski	University of Jember, Indonesia
Ikhsanul Halikin	University of Jember, Indonesia
Ridho Alfarisi	University of Jember, Indonesia
Rafiantika Megahnia Prihandini	University of Jember, Indonesia
Kusbudiono	University of Jember, Indonesia
Ermita Rizky Albirri	University of Jember, Indonesia
Robiatul Adawiyah	University of Jember, Indonesia
Dwi Agustin Retno Wardani	IKIP PGRI Jember, Indonesia

Scientific Committee and Reviewers

Joe Ryan University of Newcastle, Australia
Kinkar Chandra Das Sungkyunkwan University, Republic of Korea
Octavio Paulo Vera Villagran University of Bio-Bio, Chile
Ali Ahmad Jazan University, Saudi Arabia
Roslan Hasni Universiti Malaysia Terengganu, Malaysia
Kiki A. Sugeng University of Indonesia, Indonesia
Rinovia Simajuntak Institut Teknologi Bandung, Indonesia
Hilda Assiyatun Institut Teknologi Bandung, Indonesia
Liliek Susilowati Universitas Airlangga, Indonesia
Diary Indriati Universitas Sebelas Maret, Indonesia
Syaiful Bukhori University of Jember, Indonesia
Antonius Cahya Prihandoko University of Jember, Indonesia
Bambang Sujanarko University of Jember, Indonesia
Khairul Anam University of Jember, Indonesia

The committees of the First International Conference on Combinatorics, Graph Theory and Network Topology would like to express gratitude to all Committees for the volunteering support and contribution in the editing and reviewing process.

PAPER • OPEN ACCESS

Peer review statement

To cite this article: 2018 J. Phys.: Conf. Ser. 1008011003

Related content

- Peer review statement
- Peer review statement
- Peer review statement

View the article online for updates and enhancements.

Peer review statement

All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.

This site uses cookies．By continuing to use this site you agree to our use of cookies．To find out more，see our Privacy and Cookies policy．

Table of contents

Volume 1008
2018
4 Previous issue

The 1st International Conference of Combinatorics，Graph Theory，and Network Topology 25－26 November 2017，The University of Jember，East Java，Indonesia

View all abstracts

Accepted papers received： 9 April 2018
Published online： 27 April 2018

Preface

OPEN ACCESS

The 1st International Conference of Combinatorics，Graph Theory，and Network Topology
＋View abstractView article
（1）PDF

OPEN ACCESS
The Committees of The First International Conference on Combinatorics，Graph Theory and Network Topology （ICCGANT）
$\boldsymbol{+}$ View abstractView article
皿 PDF

OPEN ACCESS

Peer review statement
＋View abstract 国 View article 四 PDF

Papers

Applied Mathematics

OPEN ACCESS

The effect of heat generation on mixed convection flow in nano fluids over a horizontal circular cylinder
Bagus Juliyanto，Basuki Widodo and Chairul Imron
＋View abstract 国 View article 为 PDF

OPEN ACCESS

Performance comparison analysis library communication cluster system using merge sort
D A R Wulandari and M E Ramadhan
＋View abstract 国 View article 郕 PDF

The Development of Web－based Graphical User Interface for Unified Modeling Data with Multi（Correlated）Responses I Made Tirta and Dian Anggraeni
＋View abstract 国 View article PDF

OPEN ACCESS 012004
Mammogram classification scheme using 2D－discrete wavelet and local binary pattern for detection of breast cancer

Januar Adi Putra
＋View abstract 国 View article 四 PDF

OPEN ACCESS
012005
Continuous connection of two adjacent pipe parts defined by line，bézier and hermit center curves
Kusno and Antonius Cahyo Prihandoko
＋View abstract 国 View article PDF

OPEN ACCESS

The development rainfall forecasting using kalman filter
Mohammad Zulfi，Moh．Hasan and Kosala Dwidja Purnomo
＋View abstractView article
國 PDF

OPEN ACCESS
Comparison of exact，efron and breslow parameter approach method on hazard ratio and stratified cox regression model

Mohamat Fatekurohman，Nita Nurmala and Dian Anggraeni
$\boldsymbol{+}$ View abstractView article
四 PDF

OPEN ACCESS
Fractional kalman filter to estimate the concentration of air pollution
Yessy Vita Oktaviana，Erna Apriliani and Didik Khusnul Arif
＋View abstract 国 View article 国PDF

OPEN ACCESS
Fire spread estimation on forest wildfire using ensemble kalman filter
Wardatus Syarifah and Erna Apriliani
＋View abstract 国 View article 合 PDF

012010
Determination system for solar cell layout in traffic light network using dominating set
Windi Eka Yulia Retnani，Brelyanes Z．Fambudi and Slamin
＋View abstract 国 View article 这 PDF

OPEN ACCESS

Sentiment analysis system for movie review in Bahasa Indonesia using naive bayes classifier method
Yanuar Nurdiansyah，Saiful Bukhori and Rahmad Hidayat
＋View abstract
View article
禺 PDF

Tunneling effect on double potential barriers GaAs and PbS
S H B Prastowo，B Supriadi，Z R Ridlo and T Prihandono
＋View abstract 国 View article 迬 PDF

The stark effect on the spectrum energy of tritium in first excited state with relativistic condition
S H B Prastowo，B Supriadi，S Bahri and Z R Ridlo
＋View abstract 国 View article 国 PDF

OPEN ACCESS
Water hyacinth cellulose－based membrane for adsorption of liquid waste dyes and chromium
Cintia Agtasia Putri，Ian Yulianti，Ika Desianna，Anisa Sholihah and Sujarwata

Wireless SAW passive tag temperature measurement in the collision case
A．Sorokin，A．Shepeta and M．Wattimena
＋View abstract View article 国 PDF

OPEN ACCESS

Image encryption based on pixel bit modification
Kiswara Agung，Fatmawati and Herry Suprajitno
＋View abstract 国 View article 気 PDF

OPEN ACCESS
012017
Stock price estimation using ensemble Kalman Filter square root method
D F Karya，P Katias and T Herlambang
＋View abstract 国 View article 興 PDF

OPEN ACCESS
Statistical bias correction modelling for seasonal rainfall forecast for the case of Bali island
D Lealdi，S Nurdiati and A Sopaheluwakan
＋View abstract 国 View article PDF

012019
Ensemble averaging and stacking of ARIMA and GSTAR model for rainfall forecasting
D Anggraeni，I F Kurnia and A F Hadi
＋View abstract 国 View article 龱 PDF

OPEN ACCESS
A generalization of Cesàro sequence spaces in the Orlicz space
Haryadi，Supama and A Zulijanto
$\boldsymbol{+}$ View abstract 国 View article 僉 PDF

OPEN ACCESS

An algorithm of Saxena－Easo on fuzzy time series forecasting
L C Ramadhani，D Anggraeni，A Kamsyakawuni and A F Hadi
＋View abstract 国 View article 四 PDF

OPEN ACCESS

The modelling influence of water content to mechanical parameter of soil in analysis of slope stability
M Gusman，A Nazki and R R Putra
＋View abstract 國 View article 回 PDF

Hybrid ARIMAX quantile regression method for forecasting short term electricity consumption in east java

OPEN ACCESS

Analysis of Salmonella sp bacterial contamination on Vannamei Shrimp using binary logit model approach P P Oktaviana and K Fithriasari
＋View abstract 国 View article 隶 PDF

OPEN ACCESS

Copula－based model for rainfall and El－Niño in Banyuwangi Indonesia
R E Caraka，Supari and M Tahmid
＋View abstractView article
龱 PDF

OPEN ACCESS
012026
Estimation of water level and steam temperature using ensemble Kalman filter square root（EnKF－SR）
T Herlambang，Z Mufarrikoh，D F Karya and D Rahmalia
＋View abstract 国 View article PDF

Combinatorics

OPEN ACCESS
On the Total Edge Irregularity Strength of Generalized Butterfly Graph
Hafidhyah Dwi Wahyuna and Diari Indriati
＋View abstract 国 View article PDF

OPEN ACCESS

The neighbourhood polynomial of some families of dendrimers
Mohamad Nazri Husin and Roslan Hasni
＋View abstract
国 View article
鹵 PDF

012029
On $P_{2} \diamond P_{n}$－supermagic labeling of edge corona product of cycle and path graph
R Yulianto and Titin S Martini
＋View abstract 国 View article PDF

OPEN ACCESS
Optimization of scheduling system for plant watering using electric cars in agro techno park
Nelly Oktavia Adiwijaya，Yudha Herlambang and Slamin
＋View abstractView article
恜 PDF

012031
Alternative construction of graceful symmetric trees
I P Sandy，A Rizal，E N Manurung and K A Sugeng
＋View abstract 国 View article 閣 PDF

012032
On the strong metric dimension of sun graph，windmill graph，and möbius ladder graph
Mila Widyaningrum and Tri Atmojo Kusmayadi
＋View abstractView article
興 PDF

OPEN ACCESS

On the r－dynamic chromatic number of the corronation by complete graph
Arika Indah Kristiana，M．Imam Utoyo and Dafik

Restricted Size Ramsey Number for $2 \mathrm{~K}_{2}$ versus Dense Connected Graphs of Order Six
Denny Riama Silaban，Edy Tri Baskoro and Saladin Uttunggadewa
＋View abstract
View article
禺 PDF

OPEN ACCESS

On the local vertex antimagic total coloring of some families tree
Desi Febriani Putri，Dafik，Ika Hesti Agustin and Ridho Alfarisi
＋View abstract
View article
龱 PDF

OPEN ACCESS
Super local edge antimagic total coloring of $P_{n} \triangleright H$
Elsa Yuli Kurniawati，Ika Hesti Agustin，Dafik and Ridho Alfarisi
$\boldsymbol{+}$ View abstract 国 View article PDF
OPEN ACCESS 012037

On the modification Highly Connected Subgraphs（HCS）algorithm in graph clustering for weighted graph
ER Albirri，K A Sugeng and D Aldila
＋View abstract 国 View article PDF

012038
Local Edge Antimagic Coloring of Comb Product of Graphs
Ika Hesti Agustin，Moh．Hasan，Dafik，Ridho Alfarisi，A．I．Kristiana and R．M．Prihandini
＋View abstract 国 View article 戌 PDF

OPEN ACCESS

The Construction of $P_{2} \triangleright H_{\text {－antimagic graph using smaller edge－antimagic vertex labeling }}$
Rafiantika M．Prihandini，I．H．Agustin and Dafik
$\boldsymbol{+}$ View abstract 国 View article 四 PDF

OPEN ACCESS

The non－isolated resolving number of k－corona product of graphs
Ridho Alfarisi，Dafik，Slamin，I．H．Agustin and A．I．Kristiana
＋View abstractView article
四 PDF

OPEN ACCESS
Locating domination number of m－shadowing of graphs
Dafik，Ika Hesti Agustin，Ermita Rizki Albirri，Ridho Alfarisi and R．M．Prihandini
＋View abstractView article
興 PDF

OPEN ACCESS

On the total irregularity strength of caterpillar with each internal vertex has degree three
Diari Indriati，Isnaini Rosyida and Widodo
＋View abstract 国 View article PDF

OPEN ACCESS

On the locating domination number of P n ［trianglerightequal］ H graph
Dwi Agustin Retno Wardani，Ika Hesti Agustin，Dafik and Ridho Alfarisi
＋View abstract
View article
尧 PDF

On the local edge antimagicness of m－splitting graphs

E R Albirri，Dafik，Slamin，I H Agustin and R Alfarisi
＋View abstractView article因 PDF

OPEN ACCESS
Non－isolated Resolving Sets of certain Graphs Cartesian Product with a Path
I M Hasibuan，A N M Salman and S W Saputro
＋View abstract
View article
（ 4 PDF

OPEN ACCESS

On total irregularity strength of caterpillar graphs with two leaves on each internal vertex
I Rosyida，Widodo and D Indriati

+ View abstract 国 View article 国 PDF

OPEN ACCESS
Super（a，d）－H－antimagic covering of möbius ladder graph
Novia Indriyani and Titin Sri Martini
＋View abstract 国 View article PDF

012048
On the strong metric dimension of generalized butterfly graph，starbarbell graph，and $C_{m} \odot P_{n}$ graph
Ratih Yunia Mayasari and Tri Atmojo Kusmayadi
$\boldsymbol{+}$ View abstract 国 View article PDF

OPEN ACCESS
Total edge irregularity strength of（ n, t ）－kite graph
Tri Winarsih and Diari Indriati
＋View abstract 圂 View article 四 PDF

OPEN ACCESS

The local metric dimension of starbarbell graph，$K_{m} \odot P_{n}$ graph，and M obius ladder graph
Wahyu Tri Budianto and Tri Atmojo Kusmayadi
＋View abstract 国 View article PDF

012051
On the strong metric dimension of antiprism graph，king graph，and $K_{m} \odot K_{n}$ graph
Yuyun Mintarsih and Tri Atmojo Kusmayadi
＋View abstract 国 View article PDF

012052
On rainbow connection and strong rainbow connection number of amalgamation of prism graph $\mathrm{P}_{3,2}$
C．D．R．Palupi，W．Aribowo，Y．Irene and I．Hasanah
＋View abstract 国 View article PDF

OPEN ACCESS

On the locating domination number of corona product
Risan Nur Santi，Ika Hesti Agustin，Dafik and Ridho Alfarisi
＋View abstract 国 View article 閊 PDF

On the total rainbow connection of the wheel related graphs

M．S．Hasan，Slamin，Dafik，I．H．Agustin and R．Alfarisi
 ＋View abstract
 気 PDF

OPEN ACCESS

On the（Strong）Rainbow Vertex Connection of Graphs Resulting from Edge Comb Product
Dafik，Slamin and Agustina Muharromah
＋View abstractView article
國 PDF

Mathematics Education

OPEN ACCESS 012056

Comparison of learning models based on mathematics logical intelligence in affective domain
Arif Widayanto，Hasih Pratiwi and Mardiyana

+ View abstract \qquad PDF

012057
Remembering the hindu festivities mathematically by the balinese using integer operations and least common multiple

Jero Budi Darmayasa，Wahyudin，Tatang Mulyana and Muchamad Subali Noto

OPEN ACCESS
Metacognitive experience of mathematics education students in open start problem solving based on intrapersonal intelligence

D P Sari，B Usodo and S Subanti
＋View abstract 国 View article 興 PDF

OPEN ACCESS

Analysis of difficulties in mathematics problem solving based on revised Bloom＇s Taxonomy viewed from high self－efficacy

R D E Prismana，T A Kusmayadi and I Pramudya
＋View abstract 国 View article 気 PDF

Investigating students＇failure in fractional concept construction
Henry Kurniawan，Akbar Sutawidjaja，Abdur Rahman As＇ari，Makbul Muksar and Iwan Setiawan
＋View abstractView article
國 PDF

OPEN ACCESS
Analysis of students＇creative thinking level in problem solving based on national council of teachers of mathematics
Hobri，Suharto and Ahmad Rifqi Naja
＋View abstract 圂 View article 四 PDF

OPEN ACCESS

Discover the pythagorean theorem using interactive multimedia learning
I Adhitama，I Sujadi and I Pramudya
＋View abstract 国 View article PDF

OPEN ACCESS
Technological pedagogical content knowledge of junior high school mathematics teachers in teaching linear equation
S Wati，L Fitriana and Mardiyana

+ View abstract 国 View article PDF

012068
Problem solving of student with visual impairment related to mathematical literacy problem
A R Pratama，D R S Saputro and Riyadi
＋View abstract 国 View article PDF

012069
Interference thinking in constructing students＇knowledge to solve mathematical problems
W E Jayanti，B Usodo and S Subanti
＋View abstract 国 View article 龱 PDF

OPEN ACCESS
High profile students＇growth of mathematical understanding in solving linier programing problems
Utomo，TA Kusmayadi and I Pramudya
＋View abstract 国 View article PDF

OPEN ACCESS

Students＇logical－mathematical intelligence profile
D P Arum，T A Kusmayadi and I Pramudya
＋View abstract 国 View article PDF

OPEN ACCESS

Students creative thinking skills in solving two dimensional arithmetic series through research－based learning M Tohir，Z Abidin，Dafik and Hobri
＋View abstract 国 View article 岡 PDF

The errors of metacognitive evaluation on metacognitive failure of students in mathematical problem solving
Nizlel Huda，Akbar Sutawidjaja，Subanji and Swasono Rahardjo
$\boldsymbol{+}$ View abstract 国 View article 夙 PDF

Gender differences in prospective teachers＇mathematical literacy：problem solving of occupational context on shipping company
N D S Lestari，D Juniati and St．Suwarsono
＋View abstract 国 View article 坐 PDF

OPEN ACCESS
The Use of Interactive Media Ispring Suite 8Supported by Google SketchUp to Improve Students＇Geometry Skills Based on Hoffer＇s Theory

A Nurwijayanti，Budiyono and L Fitriana
＋View abstract 国 View article 四 PDF

OPEN ACCESS

Analysis of difficulties in mathematics learning on students with guardian personality type in problem－solving HOTS geometry test

R K N Karimah，T A Kusmayadi and I Pramudya
＋View abstract 国 View article PDF

OPEN ACCESS
012077
Geometry in flipbook multimedia，a role of technology to improve mathematics learning quality：the case in madiun，east java
S Andini，L Fitriana and Budiyono
＋View abstract 国 View article PDF

Profile of mathematical reasoning ability of $8^{\text {th }}$ grade students seen from communicational ability，basic skills，connection，and logical thinking
Sumarsih，Budiyono and D Indriati
＋View abstract 国 View article 四 PDF

OPEN ACCESS
Students＇thinking preferences in solving mathematics problems based on learning styles：a comparison of paper－pencil and geogebra
Umi Farihah
＋View abstract 国 View article 閊 PDF

JOURNAL LINKS

Journal home
Information for organizers
Information for authors
Search for published proceedings

Contact us

Reprint services from Curran Associates

Journal of Physics: Conference Series ə

Digital Repository Universitas Jember

Developed by:

Follow u

Scimago Lab, Copyright 20C

PAPER • OPEN ACCESS

Continuous connection of two adjacent pipe parts defined by line, bézier and hermit center curves

To cite this article: Kusno and Antonius Cahyo Prihandoko 2018 J. Phys.: Conf. Ser. 1008012005

Related content
3D Scientific Visualization with Blender® : Point of view: camera control B R Kent

Fluids in Porous Media: Pipe flow H Huinink

Pipe organs: physics in an action Colin E Pykett

View the article online for updates and enhancements.

Continuous connection of two adjacent pipe parts defined by line, bézier and hermit center curves

$K^{\prime}{ }^{1}{ }^{1}$, Antonius Cahyo Prihandoko ${ }^{1}$
${ }^{1}$ Department of Mathematics, University of Jember, Jember, Indonesia
E-mail: kusno.fmipa@unej.ac.id

Abstract

A shape of pipe part consist of the longitudinal and cross section boundary curve. Also, it can be defined by only its center curve of the pipe. To build a complete pipe, we can connect continually the pipe parts. This paper discuss about continuous connection of two adjacent pipe parts that are defined by line, Bézier and Hermit curves. The method is as follows, we join continually two adjacent center curves of the pipe parts and then by using the same formulae, we define its coincidence cross section boundary curves of the pipes. Finally, the joining of the longitudinal section boundary curves of the pipe parts can be done. The results of this study show that we can evaluate the joint continuity between two adjacent pipe parts defined by line, Bézier and Hermit curves, using the various forms of its center and cross-longitudinal section boundary curves.

1. Introduction

There are many introduced methods for modeling a shape of pipe. We can use a single-valued tubular patches and a cyclide to model radius and pipe design of tubular geometry [7,8]. By using the geometric continuity condition for algebraic surface we can unify some pieces of pipes at common vertex [1]. By joining two cylinders of revolution with axes in a common plane and diff erent radii we will find a circular surfaces [4]. Also, the shape of pipe can be evaluated by geometric properties of canal surfaces in $E^{3}[6]$. The physical model of transitional pipeline parts can be made of materials that cannot be wrinkled or stretched [5]. Then, a modular Pipe-Z parametric design system will give the results for a trefoil, a gure-eight knot and a pentafoil [9]. Diff erent from the earlier methods, this paper discusses about constructing the whole pipe using small parts connection of the pipes. In this discussion, we calculate the continuous connection of two adjacent pipe parts defined by line, Bézier and Hermit curves.

This paper is organized in the following sections. In the first section, we talk about the formulation of pipe parts that depend on its cross, longitudinal and center curves. In the second, we evaluate the continuous connection of two adjacent pipe parts of the line, Bézier and Hermit center curves. Finally, the results will be summarized in the conclusion section.

2. Pipe Parts Formulation

Consider a regular curve $\Gamma(u)$ continuous on the interval $0 \leq u \leq 1$ that can be diff erentiated twice. Also it can be expressed as a function of the natural parameter $\Gamma(s)$. The tangent unit vector \mathbf{t} and the normal unit vector \mathbf{n} are orthogonal in the form (Figure 1a)

$$
\begin{align*}
& \mathbf{t}=\frac{d \boldsymbol{\Gamma}}{d s}=\dot{\mathbf{\Gamma}}=\frac{\boldsymbol{\Gamma}^{\prime}}{\left|\boldsymbol{\Gamma}^{\prime}\right|} \tag{1a}\\
& \mathbf{n}=-\frac{\mathbf{k}}{|\mathbf{k}|} \tag{1b}
\end{align*}
$$

and

$$
\begin{equation*}
\mathbf{k}=\frac{d \mathbf{t}}{d s}=\dot{\mathbf{t}}=\frac{\mathbf{t}^{\prime}}{\left|\Gamma^{\prime}\right|} \tag{1c}
\end{equation*}
$$

Using the cross product operation of the both vectors \mathbf{t} and \mathbf{n}, we can define the unit binormal vector $\mathbf{b}=\mathbf{t} \wedge \mathbf{n}$ such that the triplet $[\mathbf{t}, \mathbf{n}, \mathbf{b}]$ form the Frenet frame of curve [3].

Consider along the direction of parameter u each points of the curve $\Gamma(u)$ as the center points of the defined circles of radius $\gamma(u, v)$ in the normal plane $[\mathbf{b}, \mathbf{n}]$ of the curve $\Gamma(u)$ that are orthogonal to unit tangent vector \mathbf{t}. Using the parametric tubular surface formulae of the curve $\Gamma(u)$, we can define a part of tubular pipe in the form [2]

$$
\begin{equation*}
\mathbf{T}(u, v)=\Gamma(u)+\Upsilon(u, v) \cdot[\cos (\varphi) \mathbf{b}+\sin (\varphi) \mathbf{n}] \tag{2}
\end{equation*}
$$

with the real function $\gamma(u, v)=\rho(u) \cdot r(v)$ expresses the radius of the pipe, $\varphi=2 \pi v$ and $0 \leq u, v \leq 1$. In this case, the real function $\rho(u)$ characterizes the inflate-deflate surfaces form of the pipe patches along its center curve, meanwhile $r(v)$ defines the cross-section curve form of the pipe. To facilitate the creation of pipe part, we determine the real function $\rho(u)$ and $r(v)$ from the Bézier, Hermit and trigonometric curves as follows

$$
\begin{align*}
& \rho_{1}(u)=P_{o}(1-u)^{3}+3 P_{1}(1-u)^{2} u+3 P_{2}(1-u) u^{2}+P_{3} u^{3} \tag{3a}\\
& \rho_{2}(u)=\rho_{2}(0) H_{1}(u)+\rho_{2}(1) H_{2}(u)+\rho_{2}^{u}(0) H_{3}(u)+\rho_{2}^{u}(1) H_{4}(u) \tag{3b}\\
& \rho_{3}(u)=a+b \cos (u)+c \sin (u) \tag{3c}\\
& r_{I}(v)=a \cdot \cos (n \cdot \varphi) \pm b \cdot \sin (n \cdot \varphi) \tag{4a}
\end{align*}
$$

where

$$
\begin{array}{ll}
H_{1}(u)=2 u^{3}-3 u^{2}+1 ; & H_{2}(u)=2 u^{3}+3 u^{2} ; \\
H_{3}(u)=u^{3}-2 u^{2}+u ; & H_{4}(u)=u^{3}-u^{2}
\end{array}
$$

with a, b, c real constants, $\varphi=2 \pi \cdot v$ and n is the number of defined rose leafs, $0 \leq u \leq 1$ and $0 \leq v$ ≤ 1. In addition, we define the cross section curve of pipe using unify n curves of the different circle parts to the same origin O in the form

$$
\begin{equation*}
r_{2}(v)=r_{o} \cdot\left[\cos \left((2 i+1) \cdot \frac{\pi}{n}-\frac{\varphi}{n}\right)\right] \pm \sqrt{\left[r_{o}^{2} \cdot \cos ^{2}\left((2 i+1) \cdot \frac{\pi}{n}-\frac{\varphi}{n}\right)-\left(r_{o}^{2}-\tau^{2}\right)\right]} \tag{4b}
\end{equation*}
$$

for $i=0,1, \ldots, n-1$ and r_{0} as a ray of polar form, $\varphi=2 \pi v$ with $0 \leq v \leq 1$. The first, we determine $\Gamma(u)$ as a line curve of equation

$$
\begin{equation*}
\mathbf{L}(u)=\mathbf{c}+\lambda u . \mathbf{l} \tag{5}
\end{equation*}
$$

with \mathbf{c} constant vector, \mathbf{I} unit direction vector, λ positive real constant and $0 \leq u \leq 1$. Because of the $\mathbf{L}(u)$ line, we must change the circles of radius $\gamma(u, v)$ in the normal plane $[\mathbf{b}, \mathbf{n}]$ in equation (2) become in plane $\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$ with \mathbf{v}_{1} and \mathbf{v}_{2} any unit constant vectors such that $\mathbf{l}=\mathbf{v}_{1} \wedge \mathbf{v}_{2}$. The second, we define the center curve $\Gamma(u)$ in the form cube Bézier curve $\mathbf{B}(u)$ and Hermit curve $\mathbf{H}(u)$ with

$$
\begin{align*}
& \mathbf{B}(u)=\mathbf{P}_{o}(1-u)^{3}+3 \mathbf{P}_{1}(1-u)^{2} u+\mathbf{P}_{2}(1-u) u^{2}+\mathbf{P}_{3} u^{3} \tag{6}\\
& \mathbf{H}(u)=\mathbf{H}_{0} H_{1}(u)+\mathbf{H}_{1} H_{2}(u)+\mathbf{H}_{o}^{u} H_{3}(u)+\mathbf{H}_{1}^{u} H_{4}(u) . \tag{7}
\end{align*}
$$

The vectors $\mathbf{P}_{o}, \mathbf{P}_{1}, \mathbf{P}_{2}$ and \mathbf{P}_{3} are the control points of the Bézier curve $\mathbf{B}(u), \mathbf{H}_{o}=\mathbf{H}(0)$, $\mathbf{H}_{1}=\mathbf{H}(1), \mathbf{H}_{o}^{u}=\mathbf{H}^{\prime}(0), \mathbf{H}_{1}^{u}=\mathbf{H}^{\prime}(1)$ and $0 \leq u \leq 1$.

The implementation of formulae (2-7) can be demonstrated as follows. Let $\mathbf{v}_{1}=\langle 0,1,0\rangle, \mathbf{v}_{2}=$ $\langle 0,0,1\rangle$ and $\mathbf{L}(u)=\langle-15,0,0\rangle+25 . u .\langle 1,0,0\rangle$. When we decide $\rho(u)=2+\cos (2 \pi u)-\sin (2 \pi u)$ and $r(v)=1$ such that $\Upsilon(u, v)=2+\cos (2 \pi u)-\sin (2 \pi u)$, equation (2) will show Figure 1a. If we determine $\rho(u)=1.5 ; r(v)=-2-\cos (4 \pi v)-\cos (8 \pi v)$ and $\rho(u)=2(1-u)^{3}+12(1-u)^{2} . u+3$ $(1-u) \cdot u^{2}+2 u^{3} ; r(v)=-2-\cos (4 \pi v)-\cos (8 \pi v)$, we will find Figure 1 b and 1 c , respectively. Figure 1d and 1e show the graph of equation (2) and (6) with control points [$\mathbf{P}_{o}=\langle-22,-18,15\rangle$, $\left.\mathbf{P}_{1}=\langle 8,-2,-50\rangle, \mathbf{P}_{2}=\langle 18,3,16\rangle, \mathbf{P}_{3}=\langle 25,-14,10\rangle\right], \rho(u)=2(1-u)^{3}+6(1-u)^{2} \cdot u+3(1-u) \cdot u^{2}$ $+2 u^{3} ; r(v)=4$ and $\rho(u)=2\left(2 u^{3}-3 u^{2}+1\right)+2\left(2 u^{3}+3 u^{2}\right)+8\left(=u^{3}-2 u^{2}+u\right)+10\left(u^{3}-u^{2}\right) ; r(v)=$ 2. Base on the equations (1-7), then we discuss about the continuous connection of two adjacent pipe parts defined by line, Bézier and Hermit curves

Figure 1. Pipe parts of the line center curve (1a,b,c) and the cubic Bézier center curve (1d,e)

3. Connection of Two Adjacent Pipe Parts

Consider two parametric tubular surface pieces $\mathbf{T}_{1}(u, v)$ and $\mathbf{T}_{2}(u, v)$ of equation (2). Its center curve and its cross-longitudinal boundary curves are respectively $\left[\mathbf{L}_{1}(u), \mathbf{L}_{2}(u)\right]$ of line curve (5) and $\left[\Upsilon_{1}(u, v), \Upsilon_{2}(u, v)\right]$ of equations (3-4) in the same direction condition. Because of the center curves of degree one, we can join the both tubular surfaces using tangential continuity, that is $\mathbf{T}_{\mathrm{L} 1}(1, v)=\mathbf{T}_{\mathrm{L} 2}(0, v)$ and $\mathbf{T}_{\mathrm{L} 1}{ }^{\mathrm{u}}(1, v)=\mathbf{T}_{\mathrm{L} 1}{ }^{\mathrm{u}}(0, v)$ along the interval $0 \leq v \leq 1$. These mean that, the first, at $\mathbf{T}_{\mathrm{L} 1}(1, v)$ and $\mathbf{T}_{\mathrm{L} 2}(0, v)$ it must be

$$
\begin{align*}
{[\mathbf{c}+\lambda . \mathbf{l}]_{\mathrm{L} 1} } & =[\mathbf{c}]_{\mathrm{L} 2} \tag{8a}\\
\Upsilon_{\mathrm{L} 1}(1, v) & =\Upsilon_{\mathrm{L} 2}(0, v) \tag{8b}
\end{align*}
$$

in plane $\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right.$]. The second, along the interval $0 \leq v \leq 1$, the tangent vectors $\mathbf{L}_{1}{ }^{u}(u)$ and $\mathbf{L}_{2}{ }^{u}(u)$ of its center curves and the first derivation of the tube radius $\Upsilon_{\mathrm{L} 1}{ }^{\mathrm{u}}(u, v)$ and $\Upsilon_{\mathrm{L} 2}{ }^{\mathrm{u}}(u, v)$ have to

$$
\begin{align*}
\mathbf{L}_{1}{ }^{\mathrm{u}}(1) & =\sigma \mathbf{L}_{2}{ }^{\mathrm{u}}(0) \text { or } \quad \mathbf{l}_{1}=\sigma \mathbf{l}_{2} \tag{9a}\\
\Upsilon_{\mathrm{L} 1}^{\mathrm{u}}(1, v) & =\Upsilon_{\mathrm{L} 2}{ }^{\mathrm{u}}(0, v) \tag{9b}
\end{align*}
$$

with σ positive real scalar. When the center curve of pipe $\mathbf{T}_{2}(u, v)$ is a cubic Bézier curve of equation (6), then $\mathbf{B}^{\prime}(u)=3\left[\left(\mathbf{P}_{1}-\mathbf{P}_{o}\right)(1-u)^{2}+2\left(\mathbf{P}_{2}-\mathbf{P}_{1}\right)(1-u) \cdot u+\left(\mathbf{P}_{3}-\mathbf{P}_{2}\right) \cdot u^{2}\right], \mathbf{B}^{\prime}(0)=3\left[\left(\mathbf{P}_{1}-\mathbf{P}_{o}\right)\right]$ and the tangential continuity condition must be

$$
\begin{align*}
& {[\mathbf{c}+\lambda . \mathbf{I}]_{\mathrm{L} 1}=\left[\mathbf{P}_{\mathrm{o}}\right]_{\mathrm{L} 2}} \tag{10a}\\
& \Upsilon_{\mathrm{L} 1}(1, v)=\Upsilon_{\mathrm{L} 2}(0, v) \tag{10b}\\
& \mathbf{l}_{1}=3 \tau\left(\mathbf{P}_{1}-\mathbf{P}_{o}\right) \tag{10c}\\
& \Upsilon_{\mathrm{L} 1}{ }^{\mathrm{u}}(1, v)=\Upsilon_{\mathrm{L} 2}{ }^{\mathrm{u}}(0, v) \tag{10d}
\end{align*}
$$

with τ positive real scalar.
Two tubular surface pieces $\mathbf{T}_{1}(u, v)$ and $\mathbf{T}_{2}(u, v)$ of the formulae (2) with its center curves $\boldsymbol{\Gamma}_{1}(u)$ and $\Gamma_{2}(u)$ of equation (6) or (7) in the same direction can be joined in the tangential continuity, if along the interval $0 \leq v \leq 1$, they verify the conditions

$$
\begin{align*}
& \mathbf{T}_{1}(1, v)=\mathbf{T}_{2}(0, v) \tag{11a}\\
& \mathbf{t}_{1}(1)=\alpha \cdot \mathbf{t}_{2}(0) \tag{11b}\\
& r_{1}^{\mathrm{u}}(1, v)=\Upsilon_{2}^{\mathrm{u}}(0, v) \tag{11c}
\end{align*}
$$

with α positive real scalar.
To Justify the implementation of equations (8-11), we show in the following connection of pipes. Let two parametric tubular surface pieces $\mathbf{T}_{1}(u, v)$ with its center curve $\mathbf{L}(u)=<-15,0,0>+$ 20.u. $\langle 1,0,0\rangle$ and $\mathbf{T}_{2}(u, v)$ with its center curve of equation (6) where $\left[\mathbf{P}_{o}=\langle 5,0,0\rangle, \mathbf{P}_{1}=\right.$ $\langle 15,0,0\rangle, \mathbf{P}_{2}=\langle 25,3,16\rangle, \mathbf{P}_{3}=\langle 35,14,10\rangle$]. Meanwhile $\Upsilon_{1}(u, v)=\Upsilon_{2}(u, v)=2+\cos (2 \pi u)-$ $\sin (2 \pi u)$. It is clear that $\mathbf{T}_{1}(u, v)$ and $\mathbf{T}_{2}(u, v)$ satisfy all conditions of equations (10) and the result is shown in Figure 2a. Other tangential connections of pipes can be showed in Figures 2b, 2c and 2d. Base on this calculation method, in the next section we discuss about the Frenet connection between two tubular pieces Bézier and Hermit of the equation (6) and (7) respectively.

The tangential continuity conditions in equation (11) of two pipe parts $\mathbf{T}_{1}(u, v)$ and $\mathbf{T}_{2}(u, v)$ are also in the moving trihedron continuity, if the triplet $\left[\mathbf{t}_{1}(1), \mathbf{n}_{1}(1), \mathbf{b}_{1}(1)\right]$ and $\left[\mathbf{t}_{2}(0), \mathbf{n}_{2}(0), \mathbf{b}_{2}(0)\right]$ of the center curves $\Gamma_{1}(u)$ and $\Gamma_{2}(u)$ coincide each other respectively and the second derivation of the direction u of radius $\Upsilon_{1}(u, v)$ and $\Upsilon_{2}(u, v)$ at $\mathbf{T}_{1}(1, v)$ and $\mathbf{T}_{2}(0, v)$ are equal respectively. So, it must be

$$
\begin{align*}
& \mathbf{n}_{1}(1)=\beta \cdot \mathbf{n}_{2}(0) \tag{12a}\\
& \mathbf{b}_{1}(1)=\gamma \cdot \mathbf{b}_{2}(0) \tag{12b}\\
& \gamma_{1}^{\mathrm{uu}}(1, \mathrm{v})=Y_{2}^{\mathrm{uu}}(0, \mathrm{v}) \tag{12c}
\end{align*}
$$

with β and γ positive real scalars. The calculation of the unit vectors \mathbf{t}, \mathbf{n} and \mathbf{b} is as follows.
$\mathbf{B}^{\prime}(u)=\left\langle R_{x}(u), R_{y}(u), R_{z}(u)\right\rangle$
with

$$
\begin{aligned}
& R_{x}(u)=3\left[\left(P_{1 x}-P_{o x}\right) \cdot(1-u)^{2}+2\left(P_{2 x}-P_{1 x}\right)(1-u) \cdot u+\left(P_{3 x}-P_{2 x}\right) \cdot u^{2}\right] \\
& R_{y}(u)=3\left[\left(P_{1 y}-P_{o y}\right) \cdot(1-u)^{2}+2\left(P_{2 y}-P_{1 y}\right)(1-u) \cdot u+\left(P_{3 y}-P_{2 y}\right) \cdot u^{2}\right] \\
& R_{z}(u)=3\left[\left(P_{1 z}-P_{o z}\right) \cdot(1-u)^{2}+2\left(P_{2 z}-P_{1 z}\right)(1-u) \cdot u+\left(P_{3 z}-P_{2 z}\right) \cdot u^{2}\right] .
\end{aligned}
$$

Figure 2. Connection 2 pipes with its centers of line, Bézier and Hermit curves
$\mathbf{B}^{\prime \prime}(u)=\left\langle W_{x}(u), W_{y}(u), W_{z}(u)\right\rangle$
with

$$
\begin{aligned}
& W_{x}(u)=6\left[\left(P_{2 x}-2 P_{1 x}+P_{o x}\right) \cdot(1-u)+\left(P_{3 x}-2 P_{2 x}+P_{1 x}\right) \cdot u\right] \\
& W_{y}(u)=6\left[\left(P_{2 y}-2 P_{1 y}+P_{o y}\right) \cdot(1-u)+\left(P_{3 y}-2 P_{2 y}+P_{1 y}\right) \cdot u\right] \\
& W_{z}(u)=6\left[\left(P_{2 z}-2 P_{1 z}+P_{o z}\right) \cdot(1-u)+\left(P_{3 z}-2 P_{2 z}+P_{1 z}\right) \cdot u\right] .
\end{aligned}
$$

$\mathbf{H}^{\prime}(u)=\left\langle N_{x}(u), N_{y}(u), N_{z}(u)\right\rangle$
with

$$
\begin{aligned}
& N_{x}(u)=\mathrm{H}_{o x}\left(6 u^{2}-6 u\right)+\mathrm{H}_{1 x}\left(-6 u^{2}+6 u\right)+\mathrm{H}_{o x}^{u}\left(3 u^{2}-4 u+1\right)+\mathrm{H}_{1 x}^{u}\left(3 u^{2}-2 u\right) \\
& N_{y}(u)=H_{o y}\left(6 u^{2}-6 u\right)+H_{1 y}\left(-6 u^{2}+6 u\right)+H_{o y}^{u}\left(3 u^{2}-4 u+1\right)+H_{1 y}^{u}\left(3 u^{2}-2 u\right) \\
& N_{z}(u)=H_{o z}\left(6 u^{2}-6 u\right)+H_{1 z}\left(-6 u^{2}+6 u\right)+H_{o z}^{u}\left(3 u^{2}-4 u+1\right)+H_{1 z}^{u}\left(3 u^{2}-2 u\right) .
\end{aligned}
$$

$\mathbf{H}^{\prime \prime}(u)=\left\langle Z_{x}(u), Z_{y}(u), Z_{z}(u)\right\rangle$
with

$$
\begin{aligned}
& Z_{x}(u)=H_{o x}(12 u-6)+H_{1 x}(-12 u+6)+H_{o x}^{u}(6 u-4)+H_{1 x}^{u}(6 u-2) \\
& Z_{y}(u)=H_{o y}(12 u-6)+H_{1 y}(-12 u+6)+H_{o y}^{u}(6 u-4)+H_{1 y}^{u}(6 u-2) \\
& Z_{z}(u)=H_{o z}(12 u-6)+H_{1 z}(-12 u+6)+H_{o z}^{u}(6 u-4)+H_{1 z}^{u}(6 u-2) .
\end{aligned}
$$

```
\(\mathbf{k}_{B}=\left\langle M_{x}(u), M_{y}(u), M_{z}(u)\right\rangle\)
with
            \(M_{x}=\left[s^{2} \cdot W_{x}(u)-\left[R_{x}^{2}(u) \cdot W_{x}(u)+R_{x}(u) \cdot R_{y}(u) \cdot W_{y}(u)+R_{x}(u) \cdot R_{z}(u) \cdot W_{z}(u)\right]\right] / s^{4}\)
            \(M_{y}=\left[s^{2} \cdot W_{y}(u)-\left[R_{y}(u) \cdot R_{x} \cdot W_{x}(u)+R_{y}^{2}(u) \cdot W_{y}(u)+R_{y}(u) \cdot R_{z}(u) \cdot W_{z}(u)\right]\right] / s^{4}\)
            \(M_{z}=\left[s^{2} \cdot W_{z}(u)-\left[R_{z}(u) \cdot R_{x}(u) \cdot W_{x}(u)+R_{z}(u) \cdot R_{y}(u) \cdot W_{y}(u)+R_{z}{ }^{2}(u) \cdot W_{z}(u)\right]\right] / s^{4}\)
            \(s=\left[R_{x}{ }^{2}(u)+R_{y}^{2}(u)+R_{z}^{2}(u)\right]^{1 / 2}\).
```

$\mathbf{k}_{H}=\left\langle S_{x}(u) ; S_{y}(u) ; S_{z}(u)\right\rangle$
with

$$
\begin{aligned}
& S_{x}=\left[n^{2} \cdot Z_{x}(u)-\left[N_{x}^{2}(u) \cdot Z_{x}(u)+N_{x}(u) \cdot N_{y}(u) \cdot Z_{y}(u)+N_{x}(u) \cdot N_{z}(u) \cdot Z_{z}(u)\right]\right] / n^{4} \\
& S_{y}=\left[n^{2} \cdot Z_{y}(u)-\left[N_{y}(u) \cdot N_{x} \cdot Z_{x}(u)+N_{y}^{2}(u) \cdot Z_{y}(u)+N_{y}(u) \cdot N_{z}(u) \cdot Z_{z}(u)\right]\right] / n^{4} \\
& S_{z}=\left[n^{2} \cdot Z_{z}(u)-\left[N_{z}(u) \cdot N_{x}(u) \cdot Z_{x}(u)+N_{z}(u) \cdot N_{y}(u) \cdot Z_{y}(u)+N_{z}^{2}(u) \cdot Z_{z}(u)\right]\right] / n^{4} \\
& n=\left[N_{x}^{2}(u)+N_{y}^{2}(u)+N_{z}^{2}(u)\right]^{1 / 2} .
\end{aligned}
$$

So, the unit vector tangent, normal and binormal of the Bezier center curve is

$$
\begin{align*}
\mathbf{t}_{B}= & (1 / \mathrm{s})\left\langle R_{x}(u), R_{y}(u), R_{z}(u)\right\rangle \tag{13a}\\
\mathbf{n}_{B}=\langle & \left\langle\left(M_{x}(u) / s_{o}\right),\left(M_{y}(u) / s_{o}\right),\left(M_{z}(u) / s_{o}\right)\right\rangle \tag{13b}\\
\mathbf{b}_{B}=\langle & \left\langle R_{y}(u) \cdot M_{z}(u)-M_{y}(u) \cdot R_{z}(u)\right] /\left(s \cdot s_{o}\right), \\
& {\left[M_{x}(u) \cdot R_{z}(u)-R_{x}(u) \cdot M_{z}(u)\right] /\left(s . s_{o}\right), } \\
& {\left.\left[R_{x}(u): M_{y}(u)-M_{x}(u): R_{y}(u)\right] /\left(s \cdot s_{o}\right)\right\rangle } \tag{13c}
\end{align*}
$$

with $s_{o}=\left[M_{x}{ }^{2}(u)+M_{y}{ }^{2}(u)+M_{z}{ }^{2}(u)\right]^{1 / 2}$. On the other hand, we have the unit vector tangent, normal and binormal of the Hermit center curve

$$
\begin{align*}
& \mathbf{t}_{H}=1 / n<N_{x}(u) ; N_{y}(u) ; N_{z}(u)> \tag{14a}\\
& \mathbf{n}_{H}=<\left.S_{x}(u) / n_{o}, S_{y}(u) / n_{o}, S_{z}(u) / n_{o}\right\rangle \tag{14b}\\
& \mathbf{b}_{H}=<\left[N_{y}(u) \cdot S_{z}(u)-S_{y}(u) \cdot N_{z}(u)\right] /\left(n . n_{o}\right), \\
& {\left[S_{x}(u) \cdot N_{z}(u)-N_{x}(u) \cdot S_{z}(u)\right] /\left(n . n_{o}\right), } \\
& {\left.\left[N_{x}(u) \cdot S_{y}(u)-S_{x}(u) \cdot N_{y}(u)\right] /\left(n . n_{o}\right)\right\rangle } \tag{14c}
\end{align*}
$$

with $n_{o}=\left[S_{x}^{2}(u)+S_{y}^{2}(u)+S_{z}^{2}(u)\right]^{1 / 2}$.

4. Conclusions

We have formulated the continuous connection of various pipe shapes which its center curves $\Gamma(u)$ are defined by line, Bézier and Hermit curves. We can conclude that two parametric tubular surface pieces $\mathbf{T}_{1}(u, v)$ and $\mathbf{T}_{2}(u, v)$ connect continuously order-1, if they verify the conditions: first, $\mathbf{T}_{1}(1, v)=\mathbf{T}_{2}(0, v)$. Second, its tangent vectors of center curve $\boldsymbol{\Gamma}_{1}(u)$ and $\boldsymbol{\Gamma}_{2}(u)$ at the values $\mathbf{T}_{1}(1, v)$ and $\mathbf{T}_{2}(0, v)$ and its tangent vectors of longitudinal boundary curve along the cross section boundary curve are equal. They are also in the moving trihedron continuity, if its triplet $[\mathbf{t}, \mathbf{n}, \mathbf{b}]$ of the center curves at $\Gamma_{1}(1)$ and $\Gamma_{2}(0)$ coincide each other respectively and the second derivation of the direction u of radius $\Upsilon_{1}(u, v)$ and $\Upsilon_{2}(u, v)$ respectively at $\mathbf{T}_{1}(1, v)$ and $\mathbf{T}_{2}(0, v)$ are equal.

The continuous connection of various pipe shapes have been introduced. The interesting thing to discuss ahead is how to build a complete pipe using some parts of pipes in various thickness. Also, the connection have to be varied and continuous.

References

[1] Chen F L, Chen, C S and Deng J S 2000 Blending Pipe Surfaces with Picewise Algebraic Surfaces Chinese Journal of Computers 9
[2] Kusno 2017 On the Modeling of the Various Inflate-Deflate Pipes Patches Based on a Curve Shape Journal of Computational Design and Engineering Submitted
[3] Lipschultz M 1969 Theory and Problems of Differential Geometry (Schaum's Outline Series McGraw-Hill New York).
[4] Malaček K and Šibrava Z 2006 Blending Circular Pipes With a Cyclic Surface Journal for Geometry and Graphics 10 99-107
[5] Obradovic R, Popkonstantinovic B and Beljin B 2012 Algorithm for Approximation Transitional Developable Surfaces Between Two Polygons Technics Technologies

Education Management 7 1907-1913
[6] Öztürk G, Byram B K and Arslan K 2010 On Canal Surfaces in E3 Selcuk Journal of Applied Mathematics 11 103-108
[7] Sanchez-Reyes J 1994 Single-valued Tubular Patches Computer Aided Geometric Design 11 565-592
[8] Srinivas Y L and Debashish D 1995 Cyclides in Geometric Modeling: Computational Tools for an Algorithmic in Infrasructure Journal of Mechanical Design 117 363-373
[9] Zawidzki M and Nishinari K 2013 Modular Pipe-Z System for Three-Dimensional Knots Journal for Geometry and Graphics 17 81-87

