\(P_2 \triangleright H \)-super antimagic total labeling of comb product of graphs

Ika Hesti Agustin*a,c, R.M. Prihandinic, Dafika,b,*

a CGANT, University of Jember, Indonesia
b Mathematics Edu. Depart., University of Jember, Indonesia
c Mathematics Depart., University of Jember, Indonesia

Received 5 March 2017; received in revised form 21 November 2017; accepted 6 January 2018
Available online xxxx

Abstract

Let \(L \) and \(H \) be two simple, nontrivial and undirected graphs. Let \(o \) be a vertex of \(H \), the comb product between \(L \) and \(H \), denoted by \(L \triangleright H \), is a graph obtained by taking one copy of \(L \) and \(|V(L)| \) copies of \(H \) and grafting the \(i \)th copy of \(H \) at the vertex \(o \) to the \(i \)th vertex of \(L \). By definition of comb product of two graphs, we can say that \(V(L \triangleright H) = \{(a, v)| a \in V(L), v \in V(H)\} \) and \((a, v)(b, w) \in E(L \triangleright H) \) whenever \(a = b \) and \(vw \in E(H) \), or \(ab \in E(L) \) and \(v = w = o \). Let \(G = L \triangleright H \) and \(P_2 \triangleright H \subseteq G \), the graph \(G \) is said to be an \((a, d)-P_2 \triangleright H\)-antimagic total graph if there exists a bijective function \(f : V(G) \cup E(G) \to \{1, 2, \ldots, |V(G)| + |E(G)|\} \) such that for all subgraphs isomorphic to \(P_2 \triangleright H \), the total \(P_2 \triangleright H \)-weights \(W(P_2 \triangleright H) = \sum_{v \in V(P_2 \triangleright H)} f(v) + \sum_{e \in E(P_2 \triangleright H)} f(e) \) form an arithmetic sequence \([a, a + d, a + 2d, \ldots, a + (n - 1)d]\), where \(a \) and \(d \) are positive integers and \(n \) is the number of all subgraphs isomorphic to \(P_2 \triangleright H \). An \((a, d)-P_2 \triangleright H\)-antimagic total labeling \(f \) is called super if the smallest labels appear in the vertices. In this paper, we study a super \((a, d)-P_2 \triangleright H\)-antimagic total labeling of \(G = L \triangleright H \) when \(L = C_n \).

Keywords: Super \(H \)-antimagic total labeling; Comb product; Cycle graph

1. Introduction

All graphs in this paper are simple, nontrivial and undirected, see [1,2] for more detail definition of graph. A comb product of \(L \) and \(H \), denoted by \(L \triangleright H \), is a graph obtained by taking one copy of \(L \) and \(|V(L)| \) copies of \(H \) and grafting the \(i \)th copy of \(H \) at the vertex \(o \) to the \(i \)th vertex of \(L \). Thus, we have \(V(L \triangleright H) = \{(a, v)| a \in V(L), v \in V(H)\} \) and \((a, v)(b, w) \in E(L \triangleright H) \) whenever \(a = b \) and \(vw \in E(H) \), or \(ab \in E(L) \) and \(v = w = o \), see Saputro, et al. in [3]. Susilowati in [4] explains in detail about a generalized comb product of graph.

Let \(G = L \triangleright H \) and let \(P_2 \triangleright H \subseteq G \), the graph \(G \) is said to be an \((a, d)-P_2 \triangleright H\)-antimagic total graph if there exist a bijective function \(f : V(G) \cup E(G) \to \{1, 2, \ldots, |V(G)| + |E(G)|\} \) such that for all subgraphs isomorphic to

* Peer review under responsibility of Kalasalingam University.
* Corresponding author at: CGANT, University of Jember, Indonesia.
E-mail addresses: ikahesti.fmipa@unej.ac.id (I.H. Agustini), rafiantikap.fkip@unej.ac.id (R.M. Prihandini), d.dafik@unej.ac.id (Dafik).

https://doi.org/10.1016/j.akcej.2018.01.008
0972-8600/© 2018 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Let \(P_2 \triangleright H \), the total \(P_2 \triangleright H \)-weights \(W(P_2 \triangleright H) = \sum_{v \in V(P_2 \triangleright H)} f(v) + \sum_{e \in E(P_2 \triangleright H)} f(e) \) form an arithmetic sequence \(\{a, a + d, a + 2d, \ldots, a + (n - 1)d\} \), where \(a \) and \(d \) are positive integers and \(n \) is the number of all subgraphs isomorphic to \(P_2 \triangleright H \). Inayah et al. in [5] proved that, for \(H \) is a non-trivial connected graph and \(k \geq 2 \) is an integer, \(sh(B, k) \) which contains exactly \(k \) subgraphs isomorphic to \(H \) is \(H \)-super antimagic. Some other relevant results can be found in [5-9] and [10-14], but their study only covered a fixed order of the covering \(H \). In this paper, we study a super \((a, d)\)-\(P_2 \triangleright H \)-antimagic total labeling of \(G = L \triangleright H \) when \(L = K_n \), and the covering is the subgraph which is isomorphic to \(P_2 \triangleright H \) where \(H \) is any graph. The resulting graphs of \(\text{comb product} \ G = L \triangleright H \) are not unique, but for the antimagicness of total labeling study, we will give the same set of weight even we consider different resulting graphs. Thus, we do not consider a certain linkage vertex \(o \) of this graph operation.

To show those existence, we will use an integer set partition technique introduced by [15,16]. This technique used in determining the feasible difference \(d \). Let \(n, m \) and \(d \) be positive integers. We consider the partition \(\mathcal{P}^{n}_{m,d}(i, j) \) of the set \(\{1, 2, \ldots, mn\} \) into \(n \) columns, \(n \geq 2 \), \(m \)-rows such that the difference between the sum of the numbers in the \((j + 1) \)th \(m \)-rows and the sum of the numbers in the \(j \)th \(m \)-rows is always equal to the constant \(d \), where \(j = 1, 2, \ldots, n - 1 \). Thus these sums form an arithmetic sequence with the difference \(d \). By the symbol \(\mathcal{P}^{n}_{m,d}(i, j) \) we denote the \(j \)th \(m \)-rows in the partition with the difference \(d \), where \(j = 1, 2, \ldots, n \). Let \(\sum \mathcal{P}^{n}_{m,d}(i, j) \) be the sum of the numbers in \(\mathcal{P}^{n}_{m,d}(i, j) \), thus \(d = \sum \mathcal{P}^{n}_{m,d}(j + 1) - \sum \mathcal{P}^{n}_{m,d}(j) \).

In this study, we will focus for the connected version of the graph \(G = L \triangleright H \). Let \(L, H \) be two graphs of order \(|V(L)|, |V(H)| \) and size \(|E(L)|, |E(H)| \) respectively. The graph \(G = L \triangleright H \) is a connected graph with \(|V(G)| = |V(L)| |V(H)| \) and \(|E(G)| = |V(L)| |E(H)| + |E(L)| \). When \(L = C_n \), thus \(|V(L)| = |E(L)| = n \). Let \(p_H = |V(H)|, q_H = |E(H)| \), the vertex set and edge set of the graph \(G = C_n \triangleright H \) can be split in the following sets: \(V(G) = \{x_j; 1 \leq j \leq n\} \cup \{x_0; 1 \leq i \leq p_H - 1, 1 \leq j \leq n\} \) and \(E(G) = \{x_jx_{j+1}, x_kx_{k+1}; 1 \leq j \leq n - 1\} \cup \{e_j; 1 \leq l \leq q_H, 1 \leq j \leq n\} \). Thus \(|V(G)| = np_H \) and \(|E(G)| = nq_H + n \).

The upper bound of feasible \(d \) for \(G = C_n \triangleright H \) to be a super \((a, d)\)-\(P_2 \triangleright H \)-antimagic total labeling follows the following lemma, proved by [7].

Lemma 1 ([7]). Let \(G \) be a simple graph of order \(n \) and size \(q \). If \(G \) is super \((a, d)\)-\(H \)-antimagic total labeling then \(d \leq \frac{(p_G - p_H)p_H + (q_G - q_H)q_H}{p_H - q_H} \), for \(p_G = |V(G)|, q_G = |E(G)|, p_H = |V(H)|, q_H = |E(H)|, n = |H| \).

If \(G = C_n \triangleright H \), the upper bound of feasible \(d \) follows the following corollary.

Corollary 1. Let \(K = P_2 \triangleright H \), for odd integer \(n \geq 3 \), if the graph \(G = C_n \triangleright H \) admits super \((a, d)\)-\(K \)-antimagic total labeling with \(p_K = 2p_H \) and \(q_K = 2q_H + 1 \), then \(d \leq \frac{(p_K^2 + q_K^2)}{2} - \frac{n(n - 1)}{2} \). The following theorem will be useful to show the variation of feasible \(d \) for \(G = C_n \triangleright H \) admits super \((a, d)\)-\(K \)-antimagic total labeling.

Theorem 1 ([17]). The number of \(r \)-combinations, with repetition allowed (multisets of size \(r \)), that can be selected from a set of \(n \) elements is \(\binom{r + n - 1}{r} \). This equals with the number of ways of choosing \(r \) objects which can be selected from \(n \) categories of objects with allowed repetition.

Furthermore, a partition theorem has been developed by Dafik et al. in [16]. This theorem is used to have a different permutation of partition technique.

Lemma 2 ([16]). Let \(n \) and \(m \) be positive integers. The sum of \(\mathcal{P}^{n}_{m,d_1}(i, j) = \{(i - 1)n + j, 1 \leq i \leq m\} \) and \(\mathcal{P}^{n}_{m,d_2}(i, j) = \{(j - 1)m + i; 1 \leq i \leq m\} \) forms an arithmetic sequence of difference \(d_1 = m, d_2 = m^2 \), respectively.

2. The result

Establishing some lemmas related to the partition \(\mathcal{P}^{n}_{m,d}(i, j) \) is a first important step prior to developing the super \((a, d)\)-\(P_2 \triangleright H \)-antimagic total labeling of \(G = C_n \triangleright H \) when \(K = P_2 \triangleright H \). We have \(p_G = |V(G)| = n \frac{d_K}{2} \) and \(q_G = |E(G)| = n \frac{(d_K - 1)}{2} + 1 \).

Based on **Lemma 2**, we can derive two new lemmas with \(d_1 = m \) and \(d_2 = m^2 \), but it has a different bijective function to **Lemma 2**.
Lemma 3. Let n, m be positive integers. For $1 \leq j \leq n$, the sum of
\[P_{m,d_1}^n(i, j) = \begin{cases} \frac{j+1}{2} (i-1)n + 1 & \text{if } i \leq m; j \text{ odd} \\ \frac{n}{2} + j(i-1)n + 1 & \text{if } i \leq m; j \text{ even} \end{cases} \]
forms an arithmetic sequence of difference $d_1 = m$.

Proof. By simple calculation, it gives $\sum_{i=1}^{m} P_{m,d_1}^n(i, j) = P_{m,d_1}^n(j)$, where
\[P_{m,d_1}^n(j) = \begin{cases} \frac{(j+1)m + i}{2} ; 1 \leq i \leq m; j \text{ odd} \\ \frac{m}{2}(j + 1) + \frac{m^2}{2} ; j \leq m; j \text{ even} \end{cases} \]
Since $\left[\frac{n}{2} \right] = \frac{n+1}{2}$ for n odd, and $\left[\frac{n}{2} \right] = \frac{n}{2}$ for n even, it is easy to see that $P_{m,d_1}^n(j) = \{ \frac{mn}{2}, \frac{mn}{2} + \frac{m^2n}{2} - mn + m, \frac{mn}{2} + \frac{m^2n}{2} - mn + 2m, \ldots, \frac{m^2n}{2} + \frac{m^2n}{2} \}$ form an arithmetic sequence of difference $d_1 = m$. \hfill \Box

Lemma 4. Let n, m be positive integers. For $1 \leq j \leq n$, the sum of
\[P_{m,d_2}^n(i, j) = \begin{cases} \frac{(j-1)m + i}{2} ; 1 \leq i \leq m; j \text{ odd} \\ \frac{m}{2}(j + 1) + \frac{m^2}{2} (j-1) + \frac{m}{2} ; j \leq m; j \text{ even} \end{cases} \]
forms an arithmetic sequence of difference $d_2 = m^2$.

Proof. By simple calculation, it gives $\sum_{i=1}^{m} P_{m,d_2}^n(i, j) = P_{m,d_2}^n(j)$, where
\[P_{m,d_2}^n(j) = \begin{cases} \frac{(j-1)m + i}{2} ; 1 \leq i \leq m; j \text{ odd} \\ \frac{m}{2}(j + 1) + \frac{m^2}{2} (j-1) + \frac{m}{2} ; j \leq m; j \text{ even} \end{cases} \]
Similarly, since $\left[\frac{n}{2} \right] = \frac{n+1}{2}$ for n odd, and $\left[\frac{n}{2} \right] = \frac{n}{2}$ for n even, it is easy to see that $P_{m,d_2}^n(j) = \{ \frac{m^2}{2} + \frac{m}{2}, \frac{m^2}{2} + \frac{3m^2}{2}, \ldots, m^2n - \frac{m^2}{2} + \frac{m}{2} \}$ form an arithmetic sequence of difference $d_2 = m^2$. It concludes the proof. \hfill \Box

Now, we are ready to present our main theorem related to the existence of super (a, d)-$P_2 \triangleright H$-antimagic total labeling of $G = L \triangleright H$ when $L = C_n$.

Theorem 2. Let $K = P_2 \triangleright H$, and let $p_H = m_1 + m_2$ and $q_H = r_1 + r_2$ be the number of vertices and edges of graph H, respectively. For odd integer $n \geq 3$, if we assign the linear combination of $P_{m,m}^n$ and P_{m,m^2}^n as a label of all elements in G, then $G = C_n \triangleright H$ admits a super (a, d)-$P_2 \triangleright H$ antimagic total labeling with $d = m_1 + m_2^2 + r_1 + r_2 + 1$.

Proof. The graph $G = C_n \triangleright H$ is a connected graph with vertex set and edge set of the graph $G = C_n \triangleright H$ can be split in the following sets: $V(G) = \{ x_j ; 1 \leq j \leq n \} \cup \{ x_{ij} ; 1 \leq i \leq p_H - 1, 1 \leq j \leq n \}$ and $E(G) = \{ x_jx_{j+1}, x_{1n}; 1 \leq j \leq n - 1 \} \cup \{ x_{ij}; 1 \leq i \leq l \leq q_H, 1 \leq j \leq n \}$. Then $p_G = |V(G)| = np_H$ and $q_G = |E(G)| = q_H + n$. Since the cover is $K = P_2 \triangleright H$, and let $p_H = m_1 + m_2$ and $q_H = r_1 + r_2$, we can define the vertex labeling $f_1 : V(G) \cup E(G) \rightarrow \{ 1, 2, \ldots, p_G + q_G \}$ by using the linear combination of $P_{m,m}^n$ and P_{m,m^2}^n. By Lemmas 3 and 4, we use m_1 and r_1 for the partition $P_{m,m}^n(i, j)$ and we use m_2 and r_2 for the partition $P_{m,m^2}^n(i, j)$. For $i = 1, 2, \ldots, m$, $l = 1, 2, \ldots, r$ and $j = 1, 2, \ldots, n$, the total labels can be expressed as follows
\[
 f_1(x_j) = \{ P_{m,m}^n \} \cup \{ P_{m,m^2}^n \} \\
 f_1(x_{ij}) = \{ mn + 1 \} \\
 f_1(x_{ij+1}) = \{ mn + 1 + j ; 1 \leq j \leq n - 1 \} \\
 f_1(x_{ij}) = \{ P_{r_1,r_1}^n \} \cup \{ P_{r_2,r_2}^n + [mn + n] \} \cup \{ P_{r_1,r_1}^n \} \cup \{ P_{r_2,r_2}^n + [n(r_1) + mn + n] \}.
\]
The vertex labeling f_1 is a bijective function $f_1 : V(G) \cup E(G) \rightarrow \{1, 2, \ldots, pg + qG\}$. The total edge-weights of $G = C_n \bowtie H$ under the labeling f_1, for $1 \leq j \leq n - 1$, constitute the following sets:

$$w^1_{f_1} = \left[\sum_{i=1}^{m} P^n_{m_1,m_1}(i, j) + m_1n + \sum_{i=1}^{m} P^n_{m_1,m_1}(i, j + 1) + m_1n \right] + \left[\sum_{i=1}^{m} P^n_{m_2,m_2}(i, j) + m_2n(m_1 + 1) + \sum_{i=1}^{m} P^n_{m_2,m_2}(i, j + 1) + m_2n(m_1 + 1) \right]$$

$$= [P^n_{m_1,m_1}(j) + nm_1 + P^n_{m_1,m_1}(j + 1) + nm_1] + [P^n_{m_2,m_2}(j) + nm_2(m_1 + 1)$$

$$+ P^n_{m_2,m_2}(j + 1) + nm_2(m_1 + 1)]$$

$$= (m_1\left(\frac{j+1}{2}\right) + \left(\frac{m_1+m_1^2}{2}\right)n - m_1n) + [m_1\left(\frac{n}{2}\right) + \frac{j+1}{2} + \left(\frac{m_1^2-m_1}{2}\right)n] + [m_2\left(\frac{2j+1}{2}\right) + \frac{m_2^2j}{2} + \frac{m_2}{2} + nm_1m_2]$$

$$= \sum_{i=1}^{m} P^n_{m_1,m_1}(i, j + 1) + m_1j + m_1 + m_1^2n - m_1n + [m_2\left(\frac{n}{2}\right) + m_2^2j + m_2 + 2nm_2m_1]$$

$$w^2_{f_1} = \sum_{i=1}^{r} P^n_{r_1,r_1}(i, j) + r_1(mn + 2n) + \sum_{i=1}^{r} P^n_{r_1,r_1}(i, j + 1) + r_1(mn + 2n)]$$

$$+ \left[\sum_{i=1}^{r} P^n_{r_2,r_2}(i, j) + r_2(nr_1 + mn + 2n) + \sum_{i=1}^{r} P^n_{r_2,r_2}(i, j + 1) + r_2(nr_1 + mn + 2n) \right]$$

$$= [P^n_{r_1,r_1}(j) + r_1(mn + 2n) + P^n_{r_1,r_1}(j + 1) + r_1(mn + 2n)] + [P^n_{r_2,r_2}(j)$$

$$+ r_2(nr_1 + mn + 2n) + P^n_{r_2,r_2}(j + 1) + r_2(nr_1 + mn + 2n)]]$$

$$= \left[r_1\left(\frac{j+1}{2}\right) + \left(\frac{r_1+r_1^2}{2}\right)n - r_1n + r_1(mn+n) \right] + \left[r_1\left(\frac{n}{2}\right) + \frac{j+1}{2} + \left(\frac{r_1^2-r_1}{2}\right)n + r_1(mn+n) \right] + [r_2\left(\frac{n}{2}\right) + r_2^2j + r_2 + 2r_2(nr_1 + mn + n)]$$

$$W^1_j = w^1_{f_1} + f_1(x_jx_{j+1}) + w^2_{f_1} = w^1_{f_1} + mn + j + 1 + w^2_{f_1} = C_1 + j[m_1 + m_2^2 + r_1 + r_2^2 + 1]$$

where $C_1 = \{m_1\left[\frac{n}{2}\right] + m_1 + m_1^2n - m_1n\} + \{m_2^2\left[\frac{n}{2}\right] + m_2 + 2nm_2m_1\} + mn + \{r_1\left[\frac{n}{2}\right] + r_1 + r_1^2n - r_1n + 2r_1(mn+n)\} + \{r_2^2\left[\frac{n}{2}\right] + r_2 + 2r_2(nr_1 + mn + n)\} + 1$. While the total K-weight for $j = 1$, n is as follows:

$$w^1_{f_1} = [\sum_{i=1}^{m} P^n_{m_1,m_1}(i, 1) + m_1n + \sum_{i=1}^{m} P^n_{m_1,m_1}(i, n) + m_1n] + [\sum_{i=1}^{m} P^n_{m_2,m_2}(i, 1) + m_2n(m_1 + 1) + \sum_{i=1}^{m} P^n_{m_2,m_2}(i, n) + m_2n(m_1 + 1)$$

$$= [P^n_{m_1,m_1}(1) + nm_1 + P^n_{m_1,m_1}(n) + nm_1] + [P^n_{m_2,m_2}(1) + nm_2(m_1 + 1)$$

$$+ P^n_{m_2,m_2}(n) + nm_2(m_1 + 1)]$$

$$= \left[m_1\left(\frac{j+1}{2}\right) + \left(\frac{m_1+m_1^2}{2}\right)n - m_1n \right] + \left[m_1\left(\frac{n}{2}\right) + \frac{m_1^2}{2}n - m_1n \right] + [\frac{m_2^2}{2}(m_2 + 1) + nm_1m_2] + [\frac{m_2}{2}(m_2n + 1) + nm_1m_2] + 1.$$
Let K.

Proof. The graph $G = C_n \cup W_s$ can be split in the following sets: $V(G) = \{x_j; 1 \leq j \leq n\} \cup \{x_{ij}; 1 \leq i \leq (s + 1) - 1, 1 \leq j \leq n\}$ and $E(G) = \{x_jx_{j+1}, x_jx_{n+1}, 1 \leq j \leq n - 1\} \cup \{x_jx_{j-1}, x_jx_{n+1}, 1 \leq j \leq n; 1 \leq i \leq s - 2\} \cup \{x_jx_i; 1 \leq j \leq n; 1 \leq i \leq s - 1\}$. Thus $p_G = |V(G)| = n(s + 1)$ and $q_G = |E(G)| = 2ns$. Since the cover is $K = P_2 \cup W_s$, and let $p_{w_j} = m_1 + m_2$ and $q_{w_i} = r_1 + r_2$, we can define the vertex labeling $f_1 : V(G) \cup E(G) \rightarrow \{1, 2, \ldots, p_G + q_G\}$ by using the linear combination of $\mathcal{P}_{m,m}^n$ and $\mathcal{P}_{m,m}^{n+2}$: By Lemma and 4, we use m_1 and r_1 for the partition $\mathcal{P}_{m,m}^n(i,j)$ and we use m_2 and r_2 for the partition $\mathcal{P}_{m,m}^n(i,j)$. For $i = 1, 2, \ldots, m, l = 1, 2, \ldots, r$ and $j = 1, 2, \ldots, n$, the total labels can be expressed as follows

$$f_2(x_j \cup x_{i,j}) = \{\mathcal{P}_{m_1,m_1}^n \cup \{\mathcal{P}_{m_2,m_2}^n \oplus nm_1\}\}$$

$$f_2(x_{i,n}) = \{mn + 1\}$$

$$f_2(x_{j,x_{j+1}}) = \{mn + 1 + j; 1 \leq j \leq n - 1\}$$

$$f_2(x_{j,x_{j+1}}) = \{mn + 1 + j; 1 \leq j \leq n - 1\}$$

$$f_2(x_{j,x_{j+1}}) = \{mn + 1 + j; 1 \leq j \leq n - 1\}$$

From the two K-weights, we have the following

$$W_j = \{C_1, C_1 + [m_1 + m_2 + r_1 + r_2 + 1], C_1 + 2[m_1 + m_2 + r_1 + r_2 + 1], \ldots, C_1 + (n - 1)[m_1 + m_2 + r_1 + r_2 + 1]\}.$$
The vertex labeling f_2 is a bijective function $f_2 : V(G) \cup E(G) \rightarrow \{1, 2, \ldots, p_G + q_G\}$. The total edge-weights of $G = C_n \triangleright W_5$ under the labeling f_2, for $1 \leq j \leq n - 1$, constitute the following sets:

\[w^1_{f_2} = \left\{ \sum_{i=1}^{m} \mathcal{P}^n_{m_1,m_1}(i, j) + m_1n + \sum_{i=1}^{m} \mathcal{P}^n_{m_1,m_1}(i, j + 1) + m_1n \right\} + \left\{ \sum_{i=1}^{m} \mathcal{P}^n_{m_2,m_2}(i, j) + m_2n(m_1 + 1) + \sum_{i=1}^{m} \mathcal{P}^n_{m_2,m_2}(i, j + 1) + m_2n(m_1 + 1) \right\} = \left[\mathcal{P}^n_{m_1,m_1}(j) + nm_1 + \mathcal{P}^n_{m_1,m_1}(j + 1) + nm_1 \right] + \left[\mathcal{P}^n_{m_2,m_2}(j) + nm_2(m_1 + 1) \right]
\]

\[= \left\{ (m_1(j + 1)/2) + (m_1^2 + 2m_1n - m_1n) \right\} + \left\{ (m_2^2 + 2m_1n + m_1) \right\} = \left\{ (m_1(j + 1)/2) + (m_1^2 + 2m_1n - m_1n) \right\} + \left\{ (m_2^2 + 2m_1n + m_1) \right\}
\]

\[w^2_{f_2} = \left\{ \sum_{i=1}^{r} \mathcal{P}^n_{r_1,r_1}(l, j) + r_1(mn + 2n) + \sum_{i=1}^{r} \mathcal{P}^n_{r_2,r_2}(l, j + 1) + r_1(mn + 2n) \right\} + \left\{ (r_2^2 - r_1^2) + r_2^2 + r_1 + r_2 \right\} + \left\{ (r_2^2 + r_1 + r_2 + r_3 + r_2r_3) + r_1 + r_2 + r_3 + r_2r_3 + r_1 + r_2 + r_3 \right\}
\]

\[= \left\{ (r_1(j + 1)/2) + (r_1^2 + 2r_1n - r_1n) \right\} + \left\{ (r_2^2 - r_1^2) + r_2^2 + r_1 + r_2 \right\} + \left\{ (r_2^2 + r_1 + r_2 + r_3 + r_2r_3) + r_1 + r_2 + r_3 + r_2r_3 + r_1 + r_2 + r_3 \right\}
\]

\[W^2_{f_1} = w^1_{f_1} + f_1(x_1,x_{i+1}) = w^2_{f_1} = w^1_{f_1} + mn + j + 1 + w^2_{f_1} = C_j + j(m_1 + m_2^2 + r_1 + r_2^2 + 1)
\]

where $C_j = \{ m_1(n^2/2) + m_1 + m_1^2n - m_1n \} + \{ m_2^2(n^2/2) + m_2 + 2mnm_1 \} + mn + \{ r_1(n^2/2) + r_1 + r_2^n - r_1n + 2r_1(mn + 1) \} + \{ r_1^2(n^2/2) + r_2 + 2r_2r_3(nr_1 + mn) \} + 1$. While the total K-weight for $j = 1, n$ is as follows:

\[w^1_{f_2} = \left\{ \sum_{i=1}^{m} \mathcal{P}^n_{m_1,m_1}(i, 1) + m_1n + \sum_{i=1}^{m} \mathcal{P}^n_{m_1,m_1}(i, 1) + m_1n \right\} + \left\{ \sum_{i=1}^{m} \mathcal{P}^n_{m_2,m_2}(i, 1) + m_2n(m_1 + 1) + \sum_{i=1}^{m} \mathcal{P}^n_{m_2,m_2}(i, 1) + m_2n(m_2 + 1) \right\} = \left[\mathcal{P}^n_{m_1,m_1}(1) + nm_1 + \mathcal{P}^n_{m_1,m_1}(n) + nm_1 \right] + \left[\mathcal{P}^n_{m_2,m_2}(1) + nm_2(m_1 + 1) \right]
\]

\[= \left\{ m_1(j + 1)/2) + (m_1^2 + 2m_1n - m_1n) \right\} + \left\{ m_2^2 + 2m_1n + m_1) \right\} = \left\{ m_1(j + 1)/2) + (m_1^2 + 2m_1n - m_1n) \right\} + \left\{ m_2^2 + 2m_1n + m_1) \right\}
\]
\[
\begin{align*}
\sum_{i=1}^{r} P_{r,1}^n(l,1) + r_1(mn + 2n) + \sum_{i=1}^{r} P_{r,1}^n(l,1) + r_1(mn + 2n) + \sum_{i=1}^{r} P_{r,2}^n(l,1) + r_2(nr_1 + mn + 2n) + \sum_{i=1}^{r} P_{r,2}^n(l,1) + r_2(nr_1 + mn + 2n) + mn + 2n)
= [P_{r,1}^n(1) + r_1(mn + 2n) + P_{r,1}^n(1) + r_1(mn + 2n) + P_{r,2}^n(1) + r_2(nr_1 + mn + 2n)]
= \{r_1(\frac{j+1}{2} + \frac{r_1 + r_2^2}{2})n - r_1n + r_1(mn + n)\} + \{r_1(\frac{n+1}{2} + \frac{r_1 + r_2}{2})n - r_1n + r_1(mn + n)\}
= \{(r_1^2 + r_1)n - \frac{3}{2}r_1n + \frac{3}{2}r_1 + 2r_1(mn + n)\} + \{(r_2^2 + r_2)n - \frac{3}{2}r_2n + \frac{3}{2}r_2 + 2r_2nr_1 + mn + n)\}
= W_2^2 = w_1^2 + f_2(x_1, x_2) + w_2^2 = w_1^2 + mn + 1 + w_2^2 = C_2.
\end{align*}
\]

From the two \(K\)-weights, we have the following
\[
\bigcup_{t=1}^{2} W_{f_2}^2 = \{C_2, C_2 + [m_1 + m_2^2 + r_1 + r_2^2 + 1], C_2 + 2[m_1 + m_2^2 + r_1 + r_2^2 + 1], \ldots, C_2 + (n - 1)(m_1 + m_2^2 + r_1 + r_2^2 + 1)\}.
\]

It is easy to see that all total \(K\)-weight elements form an arithmetic sequence with the smallest value \(C_2\) and the difference \(d = m_1 + m_2^2 + r_1 + r_2^2 + 1\). It concludes the proof. \(\square\)

Fig. 1 shows an example of super \((a, d)\)-antimagic total covering of graph \(G = C_5 \uplus W_5\) using a linear combination of \(P_{m,m}^n(i,j)\) and \(P_{m,m}^n(i,j)\). We use linear combination \(P_{4,4}^5(i,j)\) and \(P_{2,2}^5(i,j)\) for vertex labeling and linear combination \(P_{5,5}^5(i,j)\) and \(P_{5,5}^5(i,j)\) for edge labeling. Thus the value of \(d = 4 + 2^2 + 5 + 5^2 + 1 = 39\) and the smallest value is \(a = 1351\).

We have shown the theorem above, the question now, how many feasible values of \(d = m_1 + m_2^2 + r_1 + r_2^2\) can we have? The following theorem will describe its number of possibility feasible \(d\).

Theorem 3. Let \(m\) and \(r\) be positive integer of \(m = m_1 + m_2 + r_1 + r_2\). If \(d = m_1 + m_2^2 + r_1 + r_2^2\) then the number of possible different \(d\) is at least \(m\) for \(m > r\), at least \(r\) for \(r > m\), and at most \(mr\).

Proof. Let \(d_1 = m_1 + m_2^2\) and \(d_2 = r_1 + r_2^2\). Based on **Theorem 1**, the equation \(m_1 + m_2 = m\) has \(\binom{m+2}{m} - 1\) number of solutions. When we substitute all the possible solutions it will possibly gives the same \(d_1\). Take \(m_2 = 1, m_1 = m - 1\) and \(m_1 = m, m_2 = 0,\) and substitute into \(d_1\) yields the following:

\[
\begin{align*}
d_1 &= m_1 + m_2^2 = m - 1 + (1)^2 = m, \quad \text{or} \\
d_1 &= m_1 + m_2^2 = m + (0)^2 = m.
\end{align*}
\]

Thus, the number of possible solution is less than one. It implies that the number of possible solution \(m_1 + m_2 = m\) satisfying for different \(d_1 = m_1 + m_2^2\) is the following

\[
\begin{align*}
\binom{m+2}{m} - 1 &= \binom{m+1}{m} - 1 \\
&= \frac{(m+1)!}{m!1!} - 1 \\
&= \frac{(m+1)(m)!}{m!1!} - 1 \\
&= m.
\end{align*}
\]
By the same manner, we will get the number of solution such that the feasible d_2 has different r. Since $d = d_1 + d_2$ and we consider an optimal parameter d_1 or d_2, with number of possible d_1 and d_2 are respectively m and r, the number of different solution of d, for $m > r$ and for $r > m$ are m and r respectively. Furthermore, since d_1 and d_2 has respectively at most m and r solutions, $d = d_1 + d_2$ has at most mr solutions. □

3. Concluding remarks

We have shown the existence of super antimagicness of comb product of any graphs $G = L \triangleright H$ when $L = C_n$ and $K = P_2 \triangleright H$. By using a partition technique we can prove that, for odd $n \geq 3$, $G = C_n \triangleright H$ admits a super(a, d)-$P_2 \triangleright H$-antimagic total labeling with difference $d = m_1^2 + m_2 + r_1^2 + r_2 + 1$. For more illustration of our general theorem, we have taken a special $H = W_s$. For odd $n \geq 3$, $G = C_n \triangleright W_s$ admits a super(a, d)-$P_2 \triangleright W_s$-antimagic total labeling. However, for n is even we have not found any result yet. Thus, we propose the following open problem.

Open Problem 1. For even $n \geq 3$, do the graphs $G = C_n \triangleright H$ admit a super (a, d)-$P_2 \triangleright H$-antimagic total labeling with all feasible d?

Acknowledgments

We gratefully acknowledge the support from DP2M research grant HIKOM-DIKTI 3201632018 and CGANT - University of Jember of year 2018.

References

