PAPER • OPEN ACCESS

On locating independent domination number of amalgamation graphs

To cite this article: Dwi Agustin Retno Wardani et al 2017 J. Phys.: Conf. Ser. 943012027

View the article online for updates and enhancements.

On locating independent domination number of amalgamation graphs

Dwi Agustin Retno Wardani ${ }^{1,4}$, Dafik ${ }^{1,2}$, Ika Hesti Agustin ${ }^{1,3}$, Elsa Yuli Kurniawati ${ }^{1,3}$
${ }^{1}$ CGANT University of Jember, Indonesia
${ }^{2}$ Mathematics Edu. Depart. University of Jember, Indonesia
${ }^{3}$ Mathematics Depart. University of Jember, Indonesia
${ }^{4}$ Mathematics Edu. Depart. IKIP PGRI Jember, Indonesia
E-mail: 2i.agustin@gmail.com, d.dafik@unej.ac.id, ikahesti.fmipa@unej.ac.id

1. Introduction

Let G be a nontrivial, finite, simple, undirected and connected graphs, with vertex set $V(G)$, edge set $E(G)$ and with no isolated vertex, for more detail definition of graph see $[1,2]$

A set D of vertices of a graph $G=(V, E)$ is dominating if every vertex in $V(G)-D$ is adjacent to some vertex in D. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set in G. A locating-dominating set is a dominating set D that locates all the vertices in the sense that every vertex not in D is uniquely determined by its neighborhood in D. The locating domination number of G, denoted by $\gamma_{L}(G)$, is the minimum cardinality of a locating dominating set in G. A locating-dominating set of order $\gamma_{L}(G)$ is called an $\gamma_{L}(G)$-set The concept of a locating dominating set was introduced and first studied by Slater $[3,4,5,6]$ and also Waspodo et. al. [8] studied the bound of distance domination number of edge comb product.

For definition and notation of locating dominating set in [7] explained that the open neighborhood of a vertex $v \in V(G)$ is $N_{G}(v)=\{u \in V(G) ; u v \in E(G)\}$ and its closed neighborhood is the set $N_{G}[v]=N_{G}(v) \cup\{v\}$. For a set D of vertex set of $G, N_{G}[D]$ is the union of all closed neighborhoods of vertices in D. The degree of v is $d_{G}(v)=\left|N_{G}(v)\right|$. If the graph G is a connected graph, we simply write $V(G), E(G), N(v), N[v], N[D]$ and $d(v)$ rather than $V(G), E(G), N_{G}(v), N_{G}[v], N_{G}[D]$ and $d_{G}(v)$, respectively.

A dominating set of G and denoted by D, if $N[v] \cap D \neq \emptyset$ for all vertex $v \in G$, or equivalently, $N[D]=V(G)$. Any two vertices u and $v \in V(G) D$ are located by D if they have distinct neighbors in D that is, $N(u) \cap D \neq N(v) \cap D$. If a vertex $u \in V(G) D$ is located from every other vertex in $V(G) D$, we simply say that u is located by D. A set D is a locating set of G if any two distinct vertices outside D are located by D. In particular, if S is both a dominating set and a locating set, then S is a locating dominating set. We remark that the only difference between a locating set and a locating dominating set in G is that a locating set might have a unique non-dominated vertex.

A set D of vertices in a graph G is an independent dominating set of G if D is an independent set and every vertex not in D is adjacent to a vertex in D. The definition and notation of locating independent dominating set of graph G similarly the definition and notation of locating dominating set, we mean that a locating independent dominating set D of G with the additional properties that D is an independent set and every vertex not in D is adjacent to a vertex in D. The locating independent dominating number of a graph G, denoted by $\gamma_{L I}(G)$, is the minimum cardinality of a locating independent dominating set of graph G. A locating independent dominating set of order $\gamma_{L I}(G)$ is called an $\gamma_{L i}(G)$-set.

2. Main Results

The definition of amalgamation of graph is taken from [9]. Let G_{i} be a simple connected graph, for $i \in\{1,2, \ldots, t\}$ and $t \in \mathcal{N}$ and $\left|V\left(G_{i}\right)\right|=k_{i} \geq 2$ for some $k_{i} \in \mathcal{N}$. For $t \geq 2$ let $\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}$ be a finite collection of graphs and each $G_{i}, i \in\{1,2, \ldots, t\}$, has a fixed vertex $v_{o i}$ called a terminal. The amalgamation denote by $\operatorname{Amal}\left(G_{i}, v_{o i}\right)$.

In this section, we determine the exact values of locating independent dominating number of some special graphs and its operations namely star graph $S_{n}, \operatorname{Amal}\left(S_{n}, v, m\right)$, path graph P_{n}, $\operatorname{Amal}\left(P_{n}, v, m\right)$, wheel graph $W_{n}, \operatorname{Amal}\left(W_{n}, v, m\right)$, ladder graph $L_{n}, \operatorname{Amal}\left(L_{n}, v, m\right)$.
Lemma 2.1. For any graph G of order n, the lower bound of locating independent domination number of amalgamation $\operatorname{graph} \operatorname{Amal}(G, v, m)$ is $\gamma_{L i}(\operatorname{Amal}(G, v, m)) \geq m\left(\gamma_{L i}(G)-1\right)+1$.
Proof. The graph $\operatorname{Amal}(G, v, m)$ is a connected graph of order $|V(\operatorname{Amal}(G, v, m))|=(p(G)-$ 1) $m+1$ and size $|E(\operatorname{Amal}(G, v, m))|=(q(G)) m$.

To prove the lemma above, we claim that $\gamma_{L i}(\operatorname{Amal}(G, v, m)) \geq m\left(\gamma_{L i}(G)-1\right)+1$. To convince this, assume that $\gamma_{L i}(\operatorname{Amal}(G, v, m))<m\left(\gamma_{L i}(G)-1\right)+1$. The intersection between the neighborhood $N(v)$ with $v \in V(G)-D$ will be empty set. Thus, it is a contradiction. See Figure 1 for illustration.

Theorem 2.2. For $n \geq 3$, the locating independent domination number of S_{n} is $\gamma_{L i}\left(S_{n}\right)=n$.
Proof. Star graph S_{n} is a connected graph with vertex set $V\left(S_{n}\right)=\{A\} \cup\left\{x_{i} ; 1 \leq i \leq n\right\}$ and edge set $E\left(S_{n}\right)=\left\{A x_{i} ; 1 \leq i \leq n\right\}$. The order and size of S_{n} are $\left|V\left(S_{n}\right)\right|=n+1$ and $\left|E\left(S_{n}\right)\right|=n$.

We claim that $\gamma_{L i}\left(S_{n}\right) \geq n$. To convince the proof, assume that $\gamma_{L i}\left(S_{n}\right)<n$. Let the dominator vertex set of S_{n}, for $n \geq 3$, be $D=\left\{x_{i} ; 1 \leq i \leq n-1\right\}$, thus $|D|=n-1$, and let non-dominator vertex set of S_{n}, for $n \geq 3$, be $V-D=\{A\} \cup\left\{x_{n}\right\}$. Then we get the intersection of the neighborhood $N(v)$ with $v \in V(G)-D$ and dominator set D, in the following.

$$
\begin{aligned}
& N(A) \cap D=\left\{x_{i} ; 1 \leq i \leq n-1\right\} \\
& N\left(x_{n}\right) \cap D=\emptyset
\end{aligned}
$$

It can be seen that the intersection between the neighborhood $N(v)$ with $v \in V(G)-D$, for $N\left(x_{n}\right) \cap D=\emptyset$. Thus, the dominator set D do not dominate all vertices in $V\left(S_{n}\right)$. It concludes that, by assuming $\gamma_{L i}\left(S_{n}\right)<n$, it will not comply the condition of locating independent dominating set. Therefore, the lower bound of locating independent domination number of

Figure 1. Amalgamation of Wheel Graph $\operatorname{Amal}\left(W_{n}, v, m\right)$
S_{n} is $\gamma_{L i}\left(S_{n}\right) \geq n$. Furthermore, we will show that the upper bound of locating independent domination number of S_{n} is $\gamma_{L i}\left(S_{n}\right) \leq n$. Choose $D=\left\{x_{i} ; 1 \leq i \leq n\right\}$ as the dominator set of S_{n}, for $n \geq 3$, thus $|D|=n$. Choose $V-D=\{A\}$ as the non-dominator set of S_{n} for $n \geq 3$. We will get the intersection between the neighborhood $N(v)$ with $v \in V(G)-D$ and dominator set D, in the following.

$$
N(A) \cap D=\left\{x_{i} ; 1 \leq i \leq n\right\}
$$

It can be seen that the intersection between the neighborhood $N(v)$ with $v \in V(G)-D$ are all different, and it is not empty set. The dominator set D does not dominate all vertices in $V\left(S_{n}\right)$. It can be concluded that, for $\gamma_{L i}\left(S_{n}\right) \leq n$, it will comply the condition of locating independent dominating set. Thus $\gamma_{L i}\left(S_{n}\right) \leq n$. Hence, then the locating independent domination number of S_{n} is $\gamma_{L i}\left(S_{n}\right)=n$.

Theorem 2.3. Let G be an amalgamation graph of star S_{n} with $n \geq 3$ and $m \geq 3$. Then locating independent domination number of $\operatorname{Amal}\left(S_{n}, v, m\right)$ is $\gamma_{L i}\left(\operatorname{Amal}\left(S_{n}, v, m\right)\right)=m(n-1)+1$.
Proof. The graph $\operatorname{Amal}\left(S_{n}, v, m\right)$ is a connected graph with $V\left(\operatorname{Amal}\left(S_{n}, v, m\right)\right)=\{x\} \cup$ $\left\{A_{i} ; 1 \leq i \leq m\right\} \cup\left\{x_{i, j} ; 1 \leq i \leq m ; 1 \leq j \leq n-1\right\}$ and $E\left(\operatorname{Amal}\left(S_{n}, v, m\right)\right)=\left\{x A_{i} ; 1 \leq i \leq m\right\}$ $\cup\left\{A_{i} x_{i, j} ; 1 \leq i \leq m ; 1 \leq j \leq n-1\right\}$. The order of this graph is $\left|V\left(\operatorname{Amal}\left(S_{n}, v, m\right)\right)\right|=n m+1$ and the size is $\left|E\left(\operatorname{Amal}\left(S_{n}, v, m\right)\right)\right|=n m$. To prove the above theorem $\gamma_{L i}\left(\operatorname{Amal}\left(S_{n}, v, m\right)\right)=$ $m(n-1)+1$, we will show that the lower bound $\gamma_{L i}\left(\operatorname{Amal}\left(S_{n}, v, m\right)\right) \geq m(n-1)+1$ and the upper bound $\gamma_{L i}\left(\operatorname{Amal}\left(S_{n}, v, m\right)\right) \leq m(n-1)+1$.

Firstly, we will show that $\gamma_{L i}\left(\operatorname{Amal}\left(S_{n}, v, m\right)\right) \geq m(n-1)+1$. By Lemma 2.1, we have $\gamma_{L i}\left(\operatorname{Amal}\left(S_{n}, v, m\right)\right)=m\left(\gamma_{L i}\left(S_{n}\right)-1\right)+1$. Since by Theorem 2.2 we have $\gamma_{L i}\left(S_{n}\right)=n$, thus we get so $\gamma_{L i}\left(\operatorname{Amal}\left(S_{n}, v, m\right)\right) \geq m(n-1)+1$. Furthermore, we will show that the upper bound of locating independent domination number of $\gamma_{L i}\left(\operatorname{Amal}\left(S_{n}, v, m\right)\right) \leq m(n-1)+1$. We consider $D\left(\operatorname{Amal}\left(S_{n}, v, m\right)\right)=\{x\} \cup\left\{x_{i, j} ; 1 \leq i \leq m ; 1 \leq j \leq n-1\right\}$ as the dominator set of Amal $\left(S_{n}, v, m\right)$ for $n \geq 3$ and $m \geq 3$. It is clearly to see that $|D|=m(n-1)+1$, and the dominator set D dominates all vertices of $G=\operatorname{Amal}\left(S_{n}, v, m\right)$. By definition, we have the non-dominator set of $\operatorname{Amal}\left(S_{n}, v, m\right)$ for $n \geq 3$ and $m \geq 3$ is $V\left(\operatorname{Amal}\left(S_{n}, v, m\right)\right)-D\left(\operatorname{Amal}\left(S_{n}, v, m\right)\right)=\left\{A_{i} ; 1 \leq\right.$ $i \leq m\}$. The intersection between the neighborhood $N(v)$ with $v \in V(G)-D(G)$ and dominator set $D(G)$ is as follows.

$$
N\left(A_{i}\right) \cap D=\{x\},\left\{x_{i, j} ; 1 \leq i \leq m ; 1 \leq j \leq n-1\right\}
$$

It can be seen intersection between the neighborhood $N(v)$ with $v \in V(G)-D(G)$ and the obtained dominator set D are uniques and it is not empty set. Thus, it can be concluded that $\gamma_{L i}\left(\operatorname{Amal}\left(S_{n}, v, m\right)\right) \leq m(n-1)+1 . D$ also complies the condition of locating independent dominating set. Hence, the lower bound and upper bound of locating independent domination number respectively, are $\gamma_{L i} \geq m(n-1)+1$ and $\gamma_{L i} \leq m(n-1)+1$. It conludes the locating independent domination number of $\operatorname{Amal}\left(S_{n}, v, m\right)$ is $\gamma_{L i}\left(\operatorname{Amal}\left(S_{n}, v, m\right)\right)=m(n-1)+1$.

Theorem 2.4. For $n \geq 4$, locating independent domination number of P_{n} is $\gamma_{L i}\left(P_{n}\right)=\left\lceil\frac{2 n}{5}\right\rceil$.
Proof. Path graph P_{n} is a connected graph with vertex set $V\left(P_{n}\right)=\left\{x_{i} ; 1 \leq i \leq n\right\}$ and edge set $E\left(P_{n}\right)=\left\{x_{i} x_{i+1} ; 1 \leq i \leq n-1\right\}$. The order and size of P_{n} are $\left|V\left(P_{n}\right)\right|=n$ and $\left|E\left(P_{n}\right)\right|=n-1$.

We claim that $\gamma_{L i}\left(P_{n}\right) \geq\left\lceil\frac{2 n}{5}\right\rceil$. To convince the proof, assume that $\gamma_{L i}\left(P_{n}\right)<\left\lceil\frac{2 n}{5}\right\rceil$. Let the dominator vertex set of P_{n}, for $n \geq 4, D=\left\{x_{i} ; i \equiv 0 \bmod 2 ; i>2\right\}$ those $|D|=\left\lceil\frac{2 n}{5}\right\rceil$ and non-dominator vertex set of P_{n} for $n \geq 4$ is $V-D=\left\{x_{2}\right\} \cup\left\{x_{i} ; i \equiv 1 \bmod 2\right\}$. Then we get the intersection of the neighborhood $N(v)$ with $v \in V(G)-D$ and dominator set D, in the following.

$$
\begin{aligned}
& N\left(x_{i}\right) \cap D=\left\{x_{i} ; i \equiv 0 \bmod 2 ; i>2\right\} \\
& N\left(x_{1}\right) \cap D=\emptyset \\
& N\left(x_{2}\right) \cap D=\emptyset
\end{aligned}
$$

It can be seen that the intersection between the neighborhood $N(v)$ with $v \in V(G)-D$, for $N\left(x_{1}\right), N\left(x_{2}\right) \cap D=\emptyset$. Thus, the dominator set D do not dominate all vertices in $V\left(P_{n}\right)$. It concludes that, by assuming $\gamma_{L i}\left(P_{n}\right)<\left\lceil\frac{2 n}{5}\right\rceil$, it will not comply the condition of locating independent dominating set. Therefore, the lower bound of locating independent domination number of P_{n} is $\gamma_{L i}\left(P_{n}\right) \geq\left\lceil\frac{2 n}{5}\right\rceil$. Furthermore, we will show that the upper bound of locating independent domination number of P_{n} is $\gamma_{L i}\left(P_{n}\right) \leq\left\lceil\frac{2 n}{5}\right\rceil$. Choose $D=\left\{x_{i} ; i \equiv 0 \bmod 2\right\}$ as the dominator set of P_{n}, for $n \geq 4$, thus $|D|=\left\lceil\frac{2 n}{5}\right\rceil$. Choose $V-D=\left\{x_{i} ; i \equiv 1 \bmod 2\right\}$ as the non-dominator set of P_{n} for $n \geq 4$. We will get the intersection between the neighborhood $N(v)$ with $v \in V(G)-D$ and dominator set D, in the following.

$$
N\left(x_{i}\right) \cap D=\left\{x_{i} ; i \equiv 0 \bmod 2\right\}
$$

It can be seen that the intersection between the neighborhood $N(v)$ with $v \in V(G)-D$ are all different, and it is not empty set. The dominator set D does not dominate all vertices in $V\left(P_{n}\right)$. It can be concluded that, for $\gamma_{L i}\left(P_{n}\right) \leq\left\lceil\frac{2 n}{5}\right\rceil$, it will comply the condition of locating independent dominating set. Thus $\gamma_{L i}\left(P_{n}\right) \leq\left\lceil\frac{2 n}{5}\right\rceil$. Hence, then the locating independent domination number of P_{n} is $\gamma_{L i}\left(P_{n}\right)=\left\lceil\frac{2 n}{5}\right\rceil$.
Theorem 2.5. Let G be a amalgamation graph of path $\left(P_{n}\right)$ with $n \geq 4$ and $m \geq 3$. Then locating independent domination number of $\operatorname{Amal}\left(P_{n}, v, m\right)$ is $\gamma_{L i}\left(\operatorname{Amal}\left(P_{n}, v, m\right)\right)=$ $m\left(\left\lceil\frac{2 n}{5}\right\rceil-1\right)+1$.

Proof. The graph $\operatorname{Amal}\left(P_{n}, v, m\right)$ is a connected graph with $\operatorname{V}\left(\operatorname{Amal}\left(P_{n}, v, m\right)\right)=\{x\} \cup$ $\left\{x_{i, j} ; 1 \leq i \leq m ; 1 \leq j \leq n-1\right\}$ and $E\left(\operatorname{Amal}\left(P_{n}, v, m\right)\right)=\left\{x x_{i, 1} ; 1 \leq i \leq m\right\} \cup\left\{x_{i, j} x_{i, j+1} ; 1 \leq\right.$ $i \leq m ; 1 \leq j \leq n-2\}$. The order of this graph is $\left|V\left(\operatorname{Amal}\left(P_{n}, v, m\right)\right)\right|=n m-m+1$ and the size is $\left|E\left(\operatorname{Amal}\left(P_{n}, v, m\right)\right)\right|=n m-m$. To proof the above theorem $\gamma_{L i}\left(\operatorname{Amal}\left(P_{n}, v, m\right)\right)=$ $m\left(\left\lceil\frac{2 n}{5}\right\rceil-1\right)+1$, we will show that the lower bound $\gamma_{L i}\left(\operatorname{Amal}\left(P_{n}, v, m\right)\right) \geq m\left(\left\lceil\frac{2 n}{5}\right\rceil-1\right)+1$ and the upper bound $\gamma_{L i}\left(\operatorname{Amal}\left(P_{n}, v, m\right)\right) \leq m\left(\left\lceil\frac{2 n}{5}\right\rceil-1\right)+1$.

Firstly, we will show that $\gamma_{L i}\left(\operatorname{Amal}\left(P_{n}, v, m\right)\right) \geq m\left(\left\lceil\frac{2 n}{5}\right\rceil-1\right)+1$. By Lemma 2.1, we have $\gamma_{L i}\left(\operatorname{Amal}\left(P_{n}, v, m\right)\right)=m\left(\gamma_{L i}\left(P_{n}\right)-1\right)+1$. Since by Theorem 2.4 we have $\gamma_{L i}\left(P_{n}\right)=$ $\left\lceil\frac{2 n}{5}\right\rceil$, thus we get so $\gamma_{L i}\left(\operatorname{Amal}\left(P_{n}, v, m\right)\right) \geq m\left(\left\lceil\frac{2 n}{5}\right\rceil-1\right)+1$. Furthermore, we will show that the upper bound of locating independent domination number of $\gamma_{L i}\left(\operatorname{Amal}\left(P_{n}, v, m\right)\right) \leq$ $m\left(\left\lceil\frac{2 n}{5}\right\rceil-1\right)+1$. We consider $D\left(\operatorname{Amal}\left(P_{n}, v, m\right)\right)=\{x\} \cup\left\{x_{i, j} ; 1 \leq i \leq m ; j \equiv 0 \bmod \right.$ $2\}$ as the dominator set of $\operatorname{Amal}\left(P_{n}, v, m\right)$ for $n \geq 4$ and $m \geq 3$. It is clearly to see that $|D|=m\left(\left\lceil\frac{2 n}{5}\right\rceil-1\right)+1$, and the dominator set D dominates all vertices of $G=\operatorname{Amal}\left(P_{n}, v, m\right)$. By definition, we have the non-dominator set of $\operatorname{Amal}\left(P_{n}, v, m\right)$ for $n \geq 4$ and $m \geq 3$ is $V\left(\operatorname{Amal}\left(P_{n}, v, m\right)\right)-D\left(\operatorname{Amal}\left(P_{n}, v, m\right)\right)=\left\{x_{i, j} ; 1 \leq i \leq m ; j \equiv 1 \bmod 2\right\}$. The intersection between the neighborhood $N(v)$ with $v \in V(G)-D(G)$ and dominator set $D(G)$ is as follows.

$$
N\left(x_{i, j}\right) \cap D=\{x\},\left\{x_{i, j} ; 1 \leq i \leq m ; j \equiv 0 \bmod 2\right\}
$$

It can be seen intersection between the neighborhood $N(v)$ with $v \in V(G)-D(G)$ and the obtained dominator set D are uniques and it is not empty set. Thus, it can be concluded that $\gamma_{L i}\left(\operatorname{Amal}\left(P_{n}, v, m\right)\right) \leq m\left(\left\lceil\frac{2 n}{5}\right\rceil-1\right)+1 . D$ also complies the condition of locating independent dominating set. Hence, the lower bound and upper bound of locating independent domination number respectively, are $\gamma_{L i} \geq m\left(\left\lceil\frac{2 n}{5}\right\rceil-1\right)+1$ and $\gamma_{L i} \leq m\left(\left\lceil\frac{2 n}{5}\right\rceil-1\right)+1$. It conludes the locating independent domination number of $\operatorname{Amal}\left(P_{n}, v, m\right)$ is $\gamma_{L i}\left(\operatorname{Amal}\left(P_{n}, v, m\right)\right)=$ $m\left(\left\lceil\frac{2 n}{5}\right\rceil-1\right)+1$.

Theorem 2.6. For $n \geq 3$, the locating independent domination number of L_{n} is $\gamma_{L i}\left(L_{n}\right)=n$.
Proof. Ladder graph L_{n} is a connected graph with vertex set $V\left(L_{n}\right)=\left\{x_{i} ; 1 \leq i \leq n\right\} \cup$ $\left\{y_{i} ; 1 \leq i \leq n\right\}$ and edge set $E\left(L_{n}\right)=\left\{x_{i} x_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{y_{i} y_{i+1} ; 1 \leq i \leq n-1\right\} \cup$ $\left\{x_{i} y_{i} ; 1 \leq i \leq n\right\}$. The order and size of L_{n} are $\left|V\left(L_{n}\right)\right|=2 n$ and $\left|E\left(L_{n}\right)\right|=3 n-2$.

We claim that $\gamma_{L i}\left(L_{n}\right) \geq n$. To convince the proof, assume that $\gamma_{L i}\left(L_{n}\right)<n$. Let the dominator vertex set of L_{n}, for $n \geq 3$, be $D=\left\{x_{i} ; 1 \leq i \leq n-1 ; i=\right.$ odd $\} \cup$ $\left\{y_{i} ; 1 \leq i \leq n-1 ; i=\right.$ even $\}$, thus $|D|=n-1$, and let non-dominator vertex set of L_{n}, for $n \geq 3$, be $V-D=\left\{x_{i} ; 1 \leq i \leq n ; i=\right.$ even $\} \cup\left\{y_{i} ; 1 \leq i \leq n ; i=\right.$ odd $\} \cup\left\{x_{n} ; n=\right.$ odd $\} \cup$ $\left\{y_{n}, n=\right.$ even $\}$. Then we get the intersection of the neighborhood $N(v)$ with $v \in V(G)-D$ and dominator set D, in the following.

$$
\begin{aligned}
& N\left(x_{i}\right) \cap D=\left\{x_{i-1}, x_{i+1}, y_{i}\right\} ; 2 \leq i \leq n-2 ; i=\text { even } \\
& N\left(x_{n}\right) \cap D=\left\{x_{n-1}\right\} ; n=\text { even } \\
& N\left(x_{n-1}\right) \cap D=\left\{x_{n-2}, y_{n-1}\right\} ; n=\text { odd } \\
& N\left(x_{n}\right) \cap D=\emptyset ; n=\text { odd } \\
& N\left(y_{1}\right) \cap D=\left\{x_{1}, y_{2}\right\} \\
& N\left(y_{i}\right) \cap D=\left\{x_{i}, y_{i-1}, y_{i+1}\right\} ; 3 \leq i \leq n-2 ; i=\text { odd }
\end{aligned}
$$

$$
\begin{aligned}
& N\left(y_{n}\right) \cap D=\left\{y_{n-1}\right\} ; n=\text { odd } \\
& N\left(y_{n-1}\right) \cap D=\left\{x_{n-1}, y_{n-2}\right\} ; n=\text { even } \\
& N\left(y_{n}\right) \cap D=\emptyset ; n=\text { even }
\end{aligned}
$$

It can be seen that the intersection between the neighborhood $N(v)$ with $v \in V(G)-D$, for $N\left(x_{n}\right) \cap D=\emptyset$ for n odd and $N\left(y_{n}\right) \cap D=\emptyset$ for n even. Thus, the dominator set D do not dominate all vertices in $V\left(L_{n}\right)$. It concludes that, by assuming $\gamma_{L i}\left(L_{n}\right)<n$, it will not comply the condition of locating independent dominating set. Therefore, the lower bound of locating independent domination number of L_{n} is $\gamma_{L i}\left(L_{n}\right) \geq n$. Furthermore, we will show that the upper bound of locating independent domination number of L_{n} is $\gamma_{L i}\left(L_{n}\right) \leq n$. Choose $D=\left\{x_{i} ; 1 \leq i \leq n ; i=\right.$ odd $\} \cup\left\{y_{i} ; 1 \leq i \leq n ; i=\right.$ even $\}$ as the dominator set of \bar{L}_{n}, for $n \geq 3$, thus $|D|=n$. Choose $V-D=\{A\}$ as the non-dominator set of S_{n} for $n \geq 3$. We will get the intersection between the neighborhood $N(v)$ with $v \in V(G)-D$ and dominator set D, in the following.

$$
\begin{aligned}
& N\left(x_{i}\right) \cap D=\left\{x_{i-1}, x_{i+1}, y_{i}\right\} ; 2 \leq i \leq n-2 ; i=\text { even } \\
& N\left(x_{n}\right) \cap D=\left\{x_{n-1}, y_{n}\right\} ; n=\text { even } \\
& N\left(y_{1}\right) \cap D=\left\{x_{1}, y_{2}\right\} \\
& N\left(y_{i}\right) \cap D=\left\{x_{i}, y_{i-1}, y_{i+1}\right\} ; 3 \leq i \leq n ; i=\text { odd } \\
& N\left(y_{n}\right) \cap D=\left\{x_{n}, y_{n-1}\right\} ; n=\text { odd }
\end{aligned}
$$

It can be seen that the intersection between the neighborhood $N(v)$ with $v \in V(G)-D$ are all different, and it is not empty set. The dominator set L does not dominate all vertices in $V\left(L_{n}\right)$. It can be concluded that, for $\gamma_{L i}\left(L_{n}\right) \leq n$, it will comply the condition of locating independent dominating set. Thus $\gamma_{L i}\left(L_{n}\right) \leq n$. Hence, then the locating independent domination number of L_{n} is $\gamma_{L i}\left(L_{n}\right)=n$.

Theorem 2.7. Let G be a amalgamation graph of ladder (L_{n}) with $n \geq 2$ and $m \geq 2$, then locating independent domination number of $\operatorname{Amal}\left(L_{n}, v, m\right)$ is $\gamma_{L i}\left(\operatorname{Amal}\left(L_{n}, v, m\right)\right)=n m$.

Proof. The graph $\operatorname{Amal}\left(L_{n}, v, m\right)$ is a connected graph with $\operatorname{V}\left(\operatorname{Amal}\left(L_{n}, v, m\right)\right)=\left\{y_{1}\right\} \cup$ $\left\{x_{i}^{j} ; 1 \leq i \leq n ; 1 \leq j \leq m\right\} \cup\left\{y_{i+1}^{j} ; 1 \leq i \leq n-1 ; 1 \leq j \leq m\right\}$ and $E\left(\operatorname{Amal}\left(L_{n}, v, m\right)\right)$ $=\left\{y_{1} x_{1}^{j} ; 1 \leq j \leq m\right\} \cup\left\{y_{1} y_{2}^{j} ; 1 \leq j \leq m\right\} \cup\left\{x_{i+1}^{j} y_{i+1}^{j} ; 1 \leq i \leq n-1 ; 1 \leq j \leq m\right\} \cup$ $\left\{x_{i}^{j} x_{i+1}^{j} ; 1 \leq i \leq n-1 ; 1 \leq j \leq m\right\} \cup\left\{y_{i+1}^{j} y_{i+2}^{j} ; 1 \leq i \leq n-2 ; 1 \leq j \leq m\right\}$. The order of this graph is $\left|V\left(\operatorname{Amal}\left(L_{n}, v, m\right)\right)\right|=2 n m-m+1$ and the size is $\left|E\left(\operatorname{Amal}\left(L_{n}, v, m\right)\right)\right|=3 n m-2 m$. To prove the above theorem $\gamma_{L i}\left(\operatorname{Amal}\left(L_{n}, v, m\right)\right)=n m$, we will show that the lower bound $\gamma_{L i}\left(\operatorname{Amal}\left(L_{n}, v, m\right)\right) \geq n m$ and the upper bound $\gamma_{L i}\left(\operatorname{Amal}\left(L_{n}, v, m\right)\right) \leq n m$.

Firstly, we will show that $\gamma_{L i}\left(\operatorname{Amal}\left(L_{n}, v, m\right)\right) \geq n m$. By Lemma 2.1, we have $\gamma_{L i}\left(\operatorname{Amal}\left(L_{n}, v, m\right)\right)=m\left(\gamma_{L i}\left(L_{n}\right)-1\right)+1$. Since by Theorem 2.6 we have $\gamma_{L i}\left(L_{n}\right)=n$, thus we get so $\gamma_{L i}\left(\operatorname{Amal}\left(L_{n}, v, m\right)\right) \geq m(n-1)+1$. Furthermore, we will show that the upper bound of locating independent domination number of $\gamma_{L i}\left(\operatorname{Amal}\left(L_{n}, v, m\right)\right) \leq n m$. We consider $D\left(\operatorname{Amal}\left(L_{n}, v, m\right)\right)=\left\{x_{i}^{j} ; 1 \leq i \leq n ; 1 \leq j \leq m ; i=\operatorname{odd}\right\} \cup\left\{y_{i}^{j} ; 1 \leq i \leq n ; 1 \leq j \leq m ; i=\right.$ even $\}$ as the dominator set of Amal $\left(L_{n}, v, m\right)$ for $n \geq 2$ and $m \geq 2$. It is clearly to see that $|D|=n m$, and the dominator set D dominates all vertices of $G=\operatorname{Amal}\left(L_{n}, v, m\right)$. By definition, we have the non-dominator set of $\operatorname{Amal}\left(L_{n}, v, m\right)$ for $n \geq 2$ and $m \geq 2$ is $V\left(\operatorname{Amal}\left(L_{n}, v, m\right)\right)-D\left(\operatorname{Amal}\left(L_{n}, v, m\right)\right)=\left\{y_{1}\right\} \cup\left\{x_{i}^{j} ; 1 \leq i \leq n ; 1 \leq j \leq m ; i=\right.$ even $\} \cup$ $\left\{y_{i}^{j} ; 3 \leq i \leq n ; 1 \leq j \leq m ; i=\right.$ odd $\}$. The intersection between the neighborhood $N(v)$ with $v \in V(G)-D(G)$ and dominator set $D(G)$ is as follows.

$$
\begin{aligned}
& N\left(y_{1}\right) \cap D=\left\{x_{1}^{j}, y_{2}^{j} ; 1 \leq j \leq m\right\} \\
& N\left(x_{2}^{j}\right) \cap D=\left\{x_{1}^{j}, x_{3}^{j}, y_{2}^{j}\right\} ; 1 \leq j \leq m
\end{aligned}
$$

$$
\begin{aligned}
& N\left(x_{i}^{j}\right) \cap D=\left\{x_{i-1}^{j}, x_{i+1}^{j}, y_{i}^{j}\right\} ; 4 \leq i \leq n-2 ; 1 \leq j \leq m ; i=\text { even } \\
& N\left(x_{n}^{j}\right) \cap D=\left\{x_{n-1}^{j}, y_{n}^{j}\right\} ; 1 \leq j \leq m ; n=\text { even } \\
& N\left(y_{i}^{j}\right) \cap D=\left\{x_{i}^{j}, y_{i-1}^{j}, y_{i+1}^{j}\right\} ; 3 \leq i \leq n ; 1 \leq j \leq m ; i=\text { odd } \\
& N\left(y_{n}^{j}\right) \cap D=\left\{x_{n}^{j}, y_{n-1}^{j}\right\} ; 1 \leq j \leq m ; n=\text { odd }
\end{aligned}
$$

It can be seen intersection between the neighborhood $N(v)$ with $v \in V(G)-D(G)$ and the obtained dominator set D are uniques and it is not empty set. Thus, it can be concluded that $\gamma_{L i}\left(\operatorname{Amal}\left(L_{n}, v, m\right)\right) \leq n m$. D also complies the condition of locating independent dominating set. Hence, the lower bound and upper bound of locating independent domination number respectively, are $\gamma_{L i} \geq n m$ and $\gamma_{L i} \leq n m$. It conludes the locating independent domination number of $\operatorname{Amal}\left(L_{n}, v, m\right)$ is $\gamma_{L i}\left(\operatorname{Amal}\left(L_{n}, v, m\right)\right)=n m$.

3. Concluding Remarks

In this paper, we have determined the exact values of locating independent dominating number of some graph operations, namely ladder graph $S_{n}, \operatorname{Amal}\left(S_{n}, v, m\right)$, path graph P_{n}, $\operatorname{Amal}\left(P_{n}, v, m\right)$, wheel graph $W_{n}, \operatorname{Amal}\left(W_{n}, v, m\right)$, ladder graph $L_{n}, \operatorname{Amal}\left(L_{n}, v, m\right)$. As we have mentioned in introduction, to prove weather an locating independent dominating number is a hard problem. Thus, it still gives the following open problem.
Open Problem 3.1. Let G be any connected graph, determine sharper lower bounds of $\gamma_{L i}(G)$ in term of the degrees of the graph?

3.1. Acknowledgments

We gratefully acknowledge the support from CGANT University of Jember of year 2017.

References

[1] Gross J L, Yellen J and Zhang P 2014 Handbook of graph Theory Second Edition CRC Press Taylor and Francis Group
[2] Chartrand G and Lesniak L 2000 Graphs and digraphs 3rd ed (London: Chapman and Hall)
[3] P.J. Slater 1987 Dominating and location in acyclic graphs, Networks 17 55-64
[4] P.J. Slater 1988 Dominating and reference sets in graphs, J. Math. Phys. Sci. 22 445-455
[5] C.J. Colbourn, P.J. Slater, L.K. Stewart 1987 Locating-dominating sets in series-parallel networks, Congr. Numer. 56 135-162
[6] A. Finbow, B.L. Hartnell 1988 On locating dominating sets and well-covered graphs, Congr. Numer. 65 191-200
[7] Foucaud, F., Henning, M. A., Lwenstein, C. and Sasse, T 2016 Locatingdominating sets in twin-free graphs, Discrete Applied Mathematics. 200 52-58.
[8] G. A. Waspodo, Slamin, Dafik, I. H. Agustin 2016 Bound of Distance Domination Number of Graph and Edge Comb Product Graph, IOP Conf. Series: Journal of Physics: Conf. Series 855 012-014.
[9] K. Carlson 2016 Generalized books and C_{m} - snakes are Prime Graphs, Ars.Combin. 80 215-221

