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Abstract. We assume that all graphs in this paper are finite, undirected and no loop and multiple
edges. Given a graph G of order p and size q. Let H ′, H be subgraphs of G. By H ′-covering,
we mean every edge in E(G) belongs to at least one subgraph of G isomorphic to a given graph
H . A graph G is said to be an (a, d)-H-antimagic total labeling if there exist a bijective function
f : V (G)∪E(G) → {1, 2, . . . , p+q} such that for all subgraphs H ′ isomorphic to H , the total H-weights
w(H) =

�
v∈V (H′) f(v)+

�
e∈E(H′) f(e) form an arithmetic sequence {a, a+d, a+2d, ..., a+(s−1)d},

where a and d are positive integers and s is the number of all subgraphs H ′ isomorphic to H . Such a
labeling is called super if f : V (G) → {1, 2, . . . , |V (G)|}. In this paper, we will discuss a cycle-super
(a,d)-atimagicness of a connected and disjoint union of semi jahangir graphs. The results show that those
graphs admit a cycle-super (a,d)-atimagic total labeling for some feasible d ∈ {0, 1, 2, 4, 6, 7, 10, 13, 14}.

We use a handbook of graph theory written by Gross et. al [4] to define all basic definitions of graph
in this paper. For p and q are respectively the order and size of graph, by a labeling of a graph, we
mean any mapping that sends some set of graph elements to a set of positive integers. The labelings are
called vertex labelings or edge labelings If the domain is respectively a vertex-set V (G) or a edge-set
E(G). Moreover, the labelings are called total labelings if the domain is V (G) ∪ E(G). Simanjuntak
et al. in [13] introduced an (a, d)-edge-antimagic total labeling of G of order p and size q. It is a one-
to-one mapping f taking the vertices and edges of G onto {1, 2, . . . , p + q} such that the edge-weights
Wf (uv) = f(u)+ f(v)+ f(uv), uv ∈ E(G) form an arithmetic sequence {a, a+ d, . . . , a+(q− 1)d},
where the first term a is a > 0 and the common difference d is d ≥ 0. Such a labeling is called super if
the smallest possible labels appear on the vertices.

Gutiérrez, and Lladó in [3, 8] expanded the edge-magic total labeling into a magic total covering.
They defined that a graph G admits an H ′-magic covering, where H ′ is subgraph of G isomorphic to a
given graph H , if the total H-weights w(H) =

∑
v∈V (H′) f(v) +

∑
e∈E(H′) f(e) = λ(H) is a constant

magic sum and λ(H) is a constant supermagic sum of H if f : V (G) → {1, 2, . . . , p}. Some relevant
results can be found in [7, 9, 10, 12]. Recently Feňovčiková et. al [2] proved that wheels are cycle
antimagic.

Motivated by these two previous labelings, Inayah et al. [5] introduced the (a, d) − H- antimagic
total labeling. A graph G is said to be an (a, d)-H-antimagic total labeling if there exist a bijective
function f : V (G) ∪ E(G) → {1, 2, . . . , p + q} such that for all subgraphs H ′ isomorphic to
H , the total H-weights w(H) =

∑
v∈V (H′) f(v) +

∑
e∈E(H′) f(e) form an arithmetic sequence
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{a, a + d, a + 2d, ..., a + (s − 1)d}, where a and d are positive integers and s is the number of all
subgraphs H ′ isomorphic to H . Similarly, such a labeling is called super if f : V (G) → {1, 2, . . . , p}.
Inayah et. al [6] proved that, shack(H, k) which contains exactly k subgraphs isomorphic to H is
H-super antimagic, for H is a non-trivial connected graph and k ≥ 2 is an integer.

We will discuss the existence of a cycle-super (a,d)-atimagicness of a connected and disjoint union
of semi jahangir graphs. For H-supermagic graphs, we have found some results. For example Rizvi,
et.al. [11] proved the disjoint union of isomorphic copies of fans, triangular ladders, ladders, wheels,
and graphs obtained by joining a star K1,n with K1, and also disjoint union of non-isomorphic copies
of ladders and fans are cycle-supermagic labelings, but for super antimagic labelings, it remains widely
open to explore.

The Results
Prior to present the main results, we repropose a lemma proved by Dafik et.al in [1], it will be useful
to find the existence of H-super antimagic graphs. This lemma showed a least upper bound for feasible
value of d for a graph to be super (a, d)-H- antimagic total labeling.

Lemma 1. [1] Let G be a simple graph of order p and size q. If G is super (a, d)-H- antimagic total
labeling then d ≤

(pG−p
H′)pH′+(qG−q

H′)qH′

s−1 , for H ′

j are subgraphs isomorphic to H , pG = |V (G)|,
qG = |E(G)|, pH′ = |V (H ′)|, qH′ = |E(H ′)|, and s = |H ′

j |.

Proof: Assume that a (p, q)-graph has a super (a, d)-H- antimagic total labeling f : V (G) ∪
E(G) → {1, 2, 3, . . . , pG + qG} and the total H-weights w(H) =

∑
v∈V (H′) f(v) +

∑
e∈E(H′) f(e) =

{a, a + d, a + 2d, ..., a + (s − 1)d}. The minimum possible total H-weight in the labeling f is at least
1 + 2 + . . . + pH′ + (pG + 1) + (pG + 2) + . . . + (pG + qH′) =

p
H′

2 +
p2

H′

2 + qH′pG +
q
H′

2 +
q2
H′

2 . Thus,

a ≥
p

H′

2 +
p2

H′

2 + qH′pG +
q
H′

2 +
q2
H′

2 . On the other hand, the maximum possible total H-weight is at
most pG + pG − 1 + pG − 2 + ... + (pG − (pH′ − 1)) + (pG + qG) + (pG + qG − 1) + (pG + qG −

2)+ ...+ (pG + qG − (qH′ − 1)) = pH′pG −
p

H′−1
2 (pH′)+ qH′pG + qH′qG −

q
H′−1

2 (qH′). So we obtain
a + (s − 1)d ≤ pH′pG −

p
H′−1

2 (pH′) + qH′pG + qH′qG −
q
H′−1

2 (qH′). Simplifying the inequality then
we will have the desired upper bound of d. �

From now on we will introduce our terminology of connected semi Jahangir and disjoint union of
semi Jahangir graphs.

A semi Jahangir graph, denoted by SJn, is a connected graph with vertex set V (SJn) =
{p, xi, yk; for 1 ≤ i ≤ n + 1, 1 ≤ k ≤ n} and edge set E(SJn) = {pxi; 1 ≤ i ≤ n + 1}
∪ {xiyi; 1 ≤ i ≤ n} ∪ {yixi+1; 1 ≤ i ≤ n}. Since we study a super (a, d)-H- antimagic total
labeling for H ′ = C4 isomorphic to H , thus pG = |V (SJn)| = 2n + 2, qG = |E(SJn)| = 3n + 1,
pH′ = |V (C4)| = 4, qH′ = |E(C4)| = 4, s = |H ′

j| = |C4| = n. If semi Jahangir graph SJn has a super
(a, d)-C4-antimagic total labeling then it follows from Lemma 1 the upper bound of d ≤ 20.

A disjoint union of semi Jahangir graph, denoted by mSJn, is a disconnected graph with vertex
set V (mSJn) = {pj , x

j
i , y

j
k; for 1 ≤ i ≤ n + 1, 1 ≤ k ≤ n, 1 ≤ j ≤ m} and edge set

E(mSJn) = {pjx
j
i ; 1 ≤ i ≤ n + 1, 1 ≤ j ≤ m} ∪ {xj

iy
j
i ; 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪

{yj
i x

j
i+1; 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Since we study a super (a, d)-H- antimagic total labeling for

H ′ = C4 isomorphic to H , thus pG = |V (mSJn)| = 2mn + 2m, qG = |E(mSJn)| = 3mn + m,
pH′ = |V (C4)| = 4, qH′ = |E(C4)| = 4, s = |H ′

j| = |C4| = nm. If disjoint union of semi Jahangir
graph mSJn has a super (a, d)-Fn-antimagic total labeling then it follows from Lemma 1 the upper
bound of d ≤ 25.

Now we start to describe the result of the super (a, d)-C4-antimagic total labeling of semi Jahangir
graph, denoted by SJn, in the following theorems.

Theorem 1. For n ≥ 2, the graph SJn admits a super (15n + 21, 1) − C4 antimagic total labeling.
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Proof. Define the vertex and edge labeling f1 as follows

f1(p) = 1

f1(xi) = i + 1, for 1 ≤ i ≤ n + 1

f1(yi) = n + i + 2, for 1 ≤ i ≤ n

f1(pxi) = 2n + i + 2, for 1 ≤ i ≤ n + 1

f1(xiyi) = 5n − 2i + 4, for 1 ≤ i ≤ n

f1(yixi+1) = 5n − 2i + 5, for 1 ≤ i ≤ n

The vertex and edge labelings f1 are a bijective function f1 : V (SJn)∪E(SJn) → {1, 2, 3, . . . , 5n+3}.
The H-weights of SJn, for 1 ≤ i ≤ n under the labeling f1, constitute the following sets wf1 =
f1(p)+f1(xi)+f1(xi+1)+f1(yi) = (1)+(i+1)+(i+1+1)+(n+i+2) = n+3i+6, and the total H-
weights of SJn constitute the following sets Wf1 = wf1+f1(pxi)+f1(pxi+1)+f1(xiyi)+f1(yixi+1) =
(n + 3i + 6) + (2n + i + 2) + (2n + i + 1 + 2) + (5n− 2i + 4) + (5n − 2i + 5) = 15n + i + 20. It is
easy to see that the set Wf1 = {15n + 21, 15n + 22, . . . , 16n + 20}. Therefore, the graph SJn admits a
super (15n + 21, 1)-C4 antimagic total labeling, for n ≥ 2. �

Theorem 2. For n ≥ 2, the graph SJn admits a super (14n + 22, 7) − C4 antimagic total labeling.
Proof. Define the vertex labeling f2 as f2(p) = f1(p), f2(xi) = f1(xi), f2(yi) = f1(yi) and edge

labeling f2 as follows

f2(pxi) = 4n + i + 2, for1 ≤ i ≤ n + 1

f2(xiyi) = 2n + i + 2, for1 ≤ i ≤ n

f2(yixi+1) = 3n + i + 2, for1 ≤ i ≤ n

The vertex and edge labelings f2 are a bijective function f2 : V (SJn)∪E(SJn) → {1, 2, 3, . . . , 5n+3}.
The H-weights of SJn, for 1 ≤ i ≤ n under the labeling f2, constitute the following sets wf2 = wf1 , and
the total H-weights of SJn) constitute the following sets Wf2 = wf2 +f2(pxi)+f2(pxi+1)+f2(xiyi)+
f2(yixi+1) = (n+3i+6)+(4n+i+2)+(4n+i+1+2)+(2n+i+2)+(3n+i+2) = 14n+7i+15.
It is easy to see that the set Wf2 = {14n + 22, 14n + 29, . . . , 21n + 15}. Therefore, the graph SJn

admits a super (14n + 22, 7)-C4 antimagic total labeling, for n ≥ 2. �

Theorem 3. For n ≥ 2, the graph SJn admits a super (13n + 23, 10) − C4 antimagic total labeling.
Proof. Define the vertex and edge labeling f3 as follows

f3(p) = 1

f3(xi) = 2i, for 1 ≤ i ≤ n + 1

f3(yi) = 2i + 1, for 1 ≤ i ≤ n

f3(pxi) = f2(pxi)

f3(xiyi) = f2(xiyi)

f3(yixi+1) = f2(yixi+1

The vertex and edge labelings f3 are a bijective function f3 : V (SJn)∪E(SJn) → {1, 2, 3, . . . , 5n+3}.
The H-weights of SJn, for 1 ≤ i ≤ n under the labeling f3, constitute the following sets wf3 =
f3(p) + f3(xi) + f3(xi+1) + f3(yi) = (1) + (2i) + (2(i + 1)) + (2i + 1) = 6i + 4, and the total H-
weights of SJn constitute the following sets Wf3 = wf3+f3(pxi)+f3(pxi+1)+f3(xiyi)+f3(yixi+1) =
(6i + 4) + (4n + i + 2) + (4n + i + 1 + 2) + (2n + i + 2) + (3n + i + 2) = 13n + 10i + 13. It is
easy to see that the set Wf3 = {13n + 23, 13n + 33, . . . , 23n + 13}. Therefore, the graph SJn admits a
super (13n + 23, 10)-C4 antimagic total labeling, for n ≥ 2. �
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Theorem 4. For n ≥ 2, the graph SJn admits a super (11n + 25, 13) − C4 antimagic total labeling.

Proof. Define the vertex and edge labeling f4 as follows

f4(p) = 1

f4(xi) = n + i + 1, for 1 ≤ i ≤ n + 1

f4(yi) = n − i + 2, for 1 ≤ i ≤ n

f4(pxi) = 2n + 3i, for 1 ≤ i ≤ n + 1

f4(xiyi) = 2n + 3i + 1, for 1 ≤ i ≤ n

f4(yixi+1) = 2n + 3i + 2, for 1 ≤ i ≤ n

The vertex and edge labelings f4 are a bijective function f4 : V (SJn)∪E(SJn) → {1, 2, 3, . . . , 5n+3}.
The H-weights of SJn, for 1 ≤ i ≤ n under the labeling f4, constitute the following sets wf4 = f4(p)+
f4(xi)+f4(xi+1)+f4(yi) = (1)+(n+i+1)+(n+i+1+1)+(n−i+2) = 3n+i+6, and the total H-
weights of SJn constitute the following sets Wf4 = wf4+f4(pxi)+f4(pxi+1)+f4(xiyi)+f4(yixi+1) =
(3n + i + 6) + (2n + 3i) + (2n + 3(i + 1)) + (2n + 3i + 1) + (2n + 3i + 2) = 11n + 13i + 12. It is
easy to see that the set Wf4 = {11n + 25, 11n + 38, . . . , 24n + 12}. Therefore, the graph SJn admits a
super (11n + 25, 13)-C4 antimagic total labeling, for n ≥ 2. �

Theorem 5. For n ≥ 2, the graph SJn admits a super (19n+54
2 , 14) −C4 antimagic total labeling for n

is even, and for n ≥ 2, the graph SJn admits a super (19n+53
2 , 14) − C4 antimagic total labeling for n

is odd.

Proof. Define the vertex and edge labeling f5 as follows

f5(p) = 1

f5(xi) =

⎧⎨
⎩

i+3
2 , for 1 ≤ i ≤ n + 1 ; i is odd

n+i+4
2 , for 1 < i < n + 1 ; i is even, n is even

n+i+3
2 , for 1 < i ≤ n + 1 ; i is even, n is odd

f5(yi) = n + i + 2, for 1 ≤ i ≤ n

f5(pxi) = f4(pxi)

f5(xiyi) = f4(xiyi)

f5(yixi+1) = f4(yixi+1)

The vertex and edge labelings f4 are a bijective function f5 : V (SJn)∪E(SJn) → {1, 2, 3, . . . , 5n+3}.
The H-weights of SJn, for 1 ≤ i ≤ n under the labeling f5, constitute the following sets wf5 =
f5(p) + f5(xi) + f5(xi+1) + f5(yi) = 1 + ( i+3

2 ) + (n+i+1+4
2 ) + (2n + 2i + 4) = 3n+4i+14

2 for even n,
wf5 = f5(p) + f5(xi) + f5(xi+1) + f5(yi) = 1 + ( i+3

2 ) + (n+i+1+3
2 ) + (2n + 2i + 4) = 3n+4i+14

2 for
odd n and the total H-weights of SJn constitute the following sets Wf5 = wf5 + f5(pxi)+ f5(pxi+1)+
f5(xiyi) + f5(yixi+1) = (3n+4i+14

2 ) + (2n + 3i) + (2n + 3(i + 1)) + (2n + 3i + 1) + (2n + 3i + 2) =
19n+28i+26

2 for even n and Wf5 = wf5 + f5(pxi) + f5(pxi+1) + f5(xiyi) + f5(yixi+1) = (3n+4i+13
2 ) +

(2n + 3i) + (2n + 3(i + 1)) + (2n + 3i + 1) + (2n + 3i + 2) = 19n+28i+25
2 for odd n. It is easy to see

that the set Wf5 = {19n+54
2 , 19n+82

2 , . . . , 47n+26
2 } for even n and Wf5 = {19n+53

2 , 19n+81
2 , . . . , 47n+25

2 }

for odd n. Therefore, the graph SJn admits a super (19n+54
2 , 14)−C4 antimagic total labeling for n ≥ 2

with even n. And the graph SJn admits a super (19n+53
2 , 14) − C4 antimagic total labeling for n ≥ 2

with odd n. �

We continue to show the result of the super (a, d)-C4-antimagic total labeling of disjoint union of
semi Jahangir graph, SJn, in the following theorems.
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Theorem 6. For m,n ≥ 2, the graph mSJn admits a super (18mn + 14m + 4, 0)-C4 antimagic total
labeling.

Proof. For 1 ≤ j ≤ m, define the vertex and edge labeling g1 as follows

g1(p
j) = j, 1 ≤ j ≤ m

g1(x
j
i ) = 2mi + j − m, for 1 ≤ i ≤ n + 1, 1 ≤ j ≤ m

g1(y
j
i ) = 2mn − 2mi + 3m − j + 1, for 1 ≤ i ≤ n, 1 ≤ j ≤ m

g1(p
jx

j
i ) = 4mn + mi + m + j, for 1 ≤ i ≤ n + 1, 1 ≤ j ≤ m

g1(x
j
iy

j
i ) = 4mn − 2mi + 4m − 2j + 2, for 1 ≤ i ≤ n, 1 ≤ j ≤ m

g1(y
j
i x

j
i+1) = 4mn − 2mi + 4m − 2j + 1, for 1 ≤ i ≤ n, 1 ≤ j ≤ m

The vertex and edge labelings g1 are a bijective function g1 : V (mSJn) ∪ E(mSJn) →
{1, 2, 3, . . . , 5mn + 3m}. The H-weights of mSJn, for 1 ≤ i ≤ n and 1 ≤ j ≤ m under the labeling
g1, constitute the following sets wg1 = g1(p

j) + g1(x
j
i ) + g1(x

j
i+1) + g1(y

j
i ) = (j) + (2mi + j −m) +

(2m(i+1)+j−m)+(2mn−2mi+3m−j+1) = 2mn+2mi+3m+2j+1, and the total H-weights
of mSJn constitute the following sets Wg1 = wg1 + g1(p

jx
j
i ) + g1(p

jx
j
i+1) + g1(x

j
iy

j
i ) + g1(y

j
i x

j
i+1) =

(2mn + 2mi + 3m + 2j + 1) + (4mn + mi + m + j) + (4mn + m(i + 1) + m + j) + (4mn −
2mi + 4m − 2j + 2) + (4mn − 2mi + 4m − 2j + 1) = 18mn + 14m + 4. It is easy to see that the
set Wg1 = {18mn + 14m + 4, 18mn + 14m + 4, . . . , 18mn + 14m + 4}. Therefore, the graph mSJn

admits a super (18mn + 14m + 4, 0)-C4 antimagic total labeling, for m,n ≥ 2. �

Theorem 7. For m,n ≥ 2, the graph mSJn admits a super (17mn + 14m + 5, 2)-C4 antimagic total
labeling.

Proof. For 1 ≤ j ≤ m, define the vertex labeling g2 as g2(p
j) = g1(p

j), g2(x
j
i ) = g1(x

j
i ), g2(y

j
i ) =

g1(y
j
i ) and edge labeling g2 as follows

g2(p
jx

j
i ) = 4mn + mi + 2m − j + 1, for 1 ≤ i ≤ n + 1, 1 ≤ j ≤ m

g2(x
j
iy

j
i ) = 3mn − mi + 2m + j, for 1 ≤ i ≤ n, 1 ≤ j ≤ m

g2(y
j
i x

j
i+1) = 4mn − mi + 2m + j, for 1 ≤ i ≤ n, 1 ≤ j ≤ m

The vertex and edge labelings g1 are a bijective function g2 : V (mSJn) ∪ E(mSJn) →
{1, 2, 3, . . . , 5mn + 3m}. The H-weights of mSJn, for 1 ≤ i ≤ n and 1 ≤ j ≤ m under the
labeling g2, constitute the following sets wg2 = wg1 , and the total H-weights of mSJn constitute the
following sets Wg2 = wg2 + g2(p

jx
j
i ) + g2(p

jx
j
i+1) + g2(x

j
iy

j
i ) + g2(y

j
i x

j
i+1) = (2mn + 2mi +

3m + 2j + 1) + (4mn + mi + 2m − j + 1) + (4mn + m(i + 1) + 2m − j + 1) + (3mn − mi +
2m + j) + (4mn − mi + 2m + j) = 17mn + 2mi + 12m + 2j + 3. It is easy to see that the set
Wg2 = {17mn + 14m + 5, 17mn + 14m + 7, . . . , 19mn + 14m + 3}. Therefore, the graph mSJn

admits a super (17mn + 14m + 5, 2)-C4 antimagic total labeling, for m,n ≥ 2. �

Theorem 8. For m,n ≥ 2, the graph mSJn admits a super (16mn + 14m + 6, 4)-C4 antimagic total
labeling.

Proof. For 1 ≤ j ≤ m, define the vertex labeling g3 as g3(p
j) = g1(p

j), g3(x
j
i ) = g1(x

j
i ), g3(y

j
i ) =
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g1(y
j
i ) and edge labeling g3 as follows

g3(p
jx

j
i ) = 4mn + mi + m + j; 1 ≤ i ≤ n + 1, 1 ≤ j ≤ m, dan i ganjil

g3(p
jx

j
i ) = 4mn + mi + 2m − j + 1; 1 ≤ i ≤ n + 1, 1 ≤ j ≤ m, dan i genap

g3(x
j
iy

j
i ) = 2mn + mi + m + j, for 1 ≤ i ≤ n, 1 ≤ j ≤ m

g3(y
j
i x

j
i+1) = 4mn − mi + 2m + j, for 1 ≤ i ≤ n, 1 ≤ j ≤ m

The vertex and edge labelings g1 are a bijective function g3 : V (mSJn) ∪ E(mSJn) →
{1, 2, 3, . . . , 5mn + 3m}. The H-weights of mSJn, for 1 ≤ i ≤ n and 1 ≤ j ≤ m under the
labeling g3, constitute the following sets wg3 = wg1 , and the total H-weights of mSJn constitute the
following sets Wg3 = wg3 + g3(p

jx
j
i ) + g3(p

jx
j
i+1) + g3(x

j
iy

j
i ) + g3(y

j
i x

j
i+1) = (2mn + 2mi +

3m + 2j + 1) + (4mn + mi + m + j) + (4mn + m(i + 1) + 2m − j + 1) + (2mn + mi +
m + j) + (4mn − mi + 2m + j) = 16mn + 4mi + 10m + 4j + 2. It is easy to see that the set
Wg3 = {16mn + 14m + 6, 16mn + 14m + 10, . . . , 20mn + 14m + 2}. Therefore, the graph mSJn

admits a super (16mn + 14m + 6, 4)-C4 antimagic total labeling, for m,n ≥ 2. �

Theorem 9. For m,n ≥ 2, the graph mSJn admits a super (15mn + 14m + 7, 6)-C4 antimagic total
labeling.

Proof. For 1 ≤ j ≤ m, define the vertex labeling g4 as g4(p
j) = g1(p

j), g4(x
j
i ) = g1(x

j
i ), g4(y

j
i ) =

g1(y
j
i ) and edge labeling g4 as follows

g4(p
jx

j
i ) = 4mn + mi + m + j, for 1 ≤ i ≤ n + 1, 1 ≤ j ≤ m

g4(x
j
iy

j
i ) = 2mn + mi + m + j, for 1 ≤ i ≤ n, 1 ≤ j ≤ m

g4(y
j
i x

j
i+1) = 3mn + mi + m + j, for 1 ≤ i ≤ n, 1 ≤ j ≤ m

The vertex and edge labelings g4 are a bijective function g4 : V (mSJn) ∪ E(mSJn) →
{1, 2, 3, . . . , 5mn+3m}. The H-weights of mSJn, for 1 ≤ i ≤ n and 1 ≤ j ≤ m under the labeling g4,
constitute the following sets wg4 = wg1 , and the total H-weights of mSJn constitute the following sets
Wg4 = wg4 +g4(p

jx
j
i )+g4(p

jx
j
i+1)+g4(x

j
iy

j
i )+g4(y

j
i x

j
i+1) = (2mn+2mi+3m+2j+1)+(4mn+

mi+m+j)+(4mn+m(i+1)+m+j)+(2mn+mi+m+j)+(3mn+mi+m+j) = 15mn+6mi+8m+
6j+1. It is easy to see that the set Wg4 = {15mn+14m+7, 15mn+14m+13, . . . , 21mn+14m+1}.
Therefore, the graph mSJn admits a super (15mn + 14m + 7, 6)-C4 antimagic total labeling, for
m,n ≥ 2. �

Concluding Remarks
A least upper bound of difference d for connected and disjoint union of graphs are respectively d ≤ 20
and d ≤ 25. Apart from obtained d above, we haven’t found any result yet, so we propose the following
open problem:

Open Problem 1. Apart from d ∈ {1, 7, 10, 13, 14}, determine a super (a, d) − C4-antimagic total
labeling of connected SJn, for d ≤ 20 and n ≥ 2.

Open Problem 2. Apart from d ∈ {0, 2, 4, 6}, determine a super (a, d) − C4-antimagic total labeling
of disjoint union of m copies of SJn, for d ≤ 25 and m,n ≥ 2.
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