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Abstract. A total edge irregularity strength of G has been already widely studied in many
papers. The total α-labeling is said to be a total edge irregular α-labeling of the graph G if for
every two different edges e1 and e2, it holds w(e1) 6= w(e2), where w(uv) = f(u) +f(uv) +f(v),
for e = uv. The minimum α for which the graph G has a total edge irregular α-labeling is
called the total edge irregularity strength of G, denoted by tes(G). A natural extension of this
concept is by considering the evaluation of the weight is not only for each edge but we consider
the weight on each subgraph H ⊆ G. We extend the notion of the total α-labeling into a total
H-irregular α-labeling. The total α-labeling is said to be a total H-irregular α-labeling of the
graph G if for H ⊆ G, the total H-weights W (H) =

∑
v∈V (H)

f(v)+
∑

e∈E(H)
f(e) are distinct.

The minimum α for which the graph G has a total H-irregular α-labeling is called the total
H-irregularity strength of G, denoted by tHs(G). In this paper we initiate to study the tHs of
shackle and amalgamation of any graphs and their bound.

Keywords: Total α-labeling, Total H-irregularity strength, shackle of any graph,
amalgamation of any graph.

1. Introduction
All graphs in this paper are simple, nontrivial and undirected graphs. A total labeling
f : V (G) ∪ E(G) → {1, 2, 3, . . . , α} is called a total α-labeling of a graph G. The weight of
an edge uv of G, denoted by w(uv), is the sum of the labels of end vertices u and v and also
edge uv, i.e. w(uv) = f(u)+f(uv)+f(v). The total α-labeling is said to be a total edge irregular
α-labeling of the graph G if for every two different edges e1 and e2, it holds w(e1) 6= w(e2). The
minimum α for which the graph G has a total edge irregular α-labeling is called the total
edge irregularity strength of G, denoted by tes(G). A natural extension of this concept is by
considering the evaluation of the weight is not only for each edge but we consider the weight
on each subgraph H ⊆ G. Thus, we extend the notion of the total α-labeling into a total
H-irregular α-labeling. The total α-labeling is said to be a total H-irregular α-labeling of the
graph G if for H ⊆ G, the total H-weights W (H) =

∑
v∈V (H) f(v) +

∑
e∈E(H) f(e) are distinct.

The minimum α for which the graph G has a total H-irregular α-labeling is called the total
H-irregularity strength of G, denoted by tHs(G). The minimum α for which the graph G has
a subgraph irregular total α−labeling is called the total H−irregularity strength of G, tHs(G).
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The beginning of the study of the irregularity strength is introduced by Togni et al. [10]
and Frieze et al. [4]. By then, there are some result related to the total H-irregularity strength
study. Jendrol et al. [6] determined the total edge irregularity strength of complete and bipartite
complete graph, Jeyanthi et al. [7] studied about total edge irregularity strength of disjoin union
wheel graph, and Baca et al. [2], [3] studied about total edge irregularity strength of generelized
of prism graph and any graphs. Furthermore Ahmad et al. [1] found total edge irregularity
strength of zigzag graph, as well as Pfender [8] studied about total edge irregularity strength
of large graph, and the last Rajasingh et al. [9] also studied total edge irregularity strength of
series parallel graph.

In this paper, we study the existence of the total H-irregularity α-labeling of some graph
operations, namely shackle and amalgamation of graph G. A shackle of G1, G2, . . . , Gk, denoted
by Shack(G1, G2, . . . , Gk), is any graph constructed from non-trivial connected and ordered
graphs G1, G2, . . . , Gk such that for every 1 ≤ i, j ≤ k with |i−j| ≥ 2, Gi and Gj have no common
vertex and for every 1 ≤ i ≤ k − 1, Gi and Gi + 1 share exactly one common vertex, called a
linkage vertex, where the k− 1 linkage vertices are all distinct. Meanwhile, let {G1, G2, . . . , Gn}
be a finite collection of graphs and each Gi has a fixed vertex v0i or edge e0i called a terminal
vertex or edge, respectively [5]. The vertex-amalgamation of G1, G2, . . . , Gn denoted by Amal
{Gi, v0i}, is formed by taking all the Gi’s and identifying their terminal vertices. Similarly,
the edge-amalgamation of G1, G2, . . . , Gn, denoted by Amal{Gi, e0i}, is formed by taking all the
Gi’s and identifying their terminal edges. Furthermore, if Gi’ are isomorphic graphs then we
denote such graphs as Shack {G, v, n} and Amal {G, v, n} for vertex, or Shack {G, e, n} and
Amal {G, e, n} for edge. In this paper we will study the tHs of shackle and amalgamation of
any graphs and as well as determine their bound.

2. The Results
Prior to show the values of tHs of those graphs, we will show the lower bound of tHs in general
graph by the following lemma.

Lemma 2.1 Given a graph H ⊂ G. Let pH , qH be respectively be number of vertices and edges
of H and |H| be the number of subgraphs. The total H-irregularity strength satisfies

tHs(G) ≥ dpH+qH+|H|−1
pH+qH

e

Proof. A total α-labeling is a labeling f : V (G) ∪E(G)→ {1, 2, 3, . . . , α}. The H- irregularity
total α-labeling of graph G is a total α-labeling such that for each subgraph H ⊆ G, the
weight W (H) =

∑
v∈V (K) f(v) +

∑
e∈E(K) f(e) are all distinct. Furthermore, since we require

the minimum α for which the graph G has a total H-irregular α-labeling, the set of the total
H-weight should be consecutive, otherwise it will not give a minimum tHs. Thus, the set of
total H weight is W (H) = {pH + qH , pH + qH + 1, pH + qH + 2, . . . , pH + qH + (|H|−1)}. On the
other hand the maximum possible H weight of graph G is at most tHs(G)(pH + qH). It implies

tHs(G)(pH + qH) ≥ pH + qH + |H| − 1

tHs(G) ≥ pH+qH+|H|−1
pH+qH

Since tHs(G) should be integer, and we need a sharpest lower bound, it implies

tHs(G) ≥ dpH + qH + |H| − 1

pH + qH
e.

It completes the proof. ut
Now, we are ready to show our main results.
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Theorem 2.1 Let G = Shack(H, v, n) be a shackle of any graph H. Then the total H-
irregularity strength satisfies

tHs(Shack(H, v, n)) = dm+ n+ 1

m+ 2
e

where pH and qH are respectively the number of vertices and edges in subgraph H ⊆ G and
m = pH + qH − 2 and n = |H|.

Proof. The vertex set and edge set of the graph Shack(H, v, n) can be split into two following
sets: V (Shack(H, v, n)) = {vij ; 1 ≤ i ≤ pH − 2, 1 ≤ j ≤ n} ∪ {xk; 1 ≤ k ≤ n + 1} and
E(Shack(H, v, n)) = {elj ; 1 ≤ l ≤ qH , 1 ≤ j ≤ n}. Thus, the graph Shack(H, v, n) has
|V (Shack(H, v, n))| = (n − 1)pH + 1, |E(Shack(H, v, n))| = nqH . Since m = pH + qH − 2,

then by Lemma 2.1, we have tHs(Shack(H, v, n)) ≥ dPH+qH+|H|−1
PH+qH

e = dm+2+n−1
m+2 e = dm+n+1

m+2 e.
Thus, tHs(Shack(H, v, n)) ≥ dm+n+1

m+2 e.
Now we will show that tHs(Shack(H, v, n)) ≤ dm+n+1

m+2 e. Define f as a vertex and edge
labeling of graph G, f : V (G) ∪ E(G)→ {1, 2, . . . , α} by the following function.

f(xk) = d k
m+2e

f(vij) ∪ f(elj) =

{
d j
m−(t+1)e; 1 ≤ j ≤ m− t+ 1, 1 ≤ t ≤ m
d j+t−(m+1)

m+2 e+ 1;m− t+ 2 ≤ j ≤ n, 1 ≤ t ≤ m

Under the labeling f , the total H-weight W (H) =
∑

v∈V (H) f(v) +
∑

e∈E(H) f(e) is W (H) =
{m+ 2,m+ 3, . . . ,m+n+ 1} forms a consecutive sequence. It implies the set of H−weights are
distinct. By considering the above label f , the minimum tHs(Shack(H, v, n)) can be achieved
by the following:

tHs(Shack(H, v, n)) ≤ d j+t−(m+1)
m+2 e+ 1, for j = n, t = m

= dn+m−m−1
m+2 + m+2

m+2e
= dn−1+m+2

m+2 e
= dm+n+1

m+2 e

Thus, tHs(Shack(H, v, n)) ≤ dm+n+1
m+2 e. It concludes that tHs(Shack(H, v, n)) = dm+n+1

m+2 e. ut

Theorem 2.2 Let G = cShack(H, v, n) be disjoint union of multiple copies c of shackle of graph
H. Then

tHs(cShack(H, v, n)) = dm+ cn+ 1

m+ 2
e

where m = pH + qH − 2, pH and qH are the number of vertices and edges in H respectively,
n = |H| and c is number of copies of G.

Proof. The graph G = cShack(H, v, n) is a diconnected graph with vertex set
V (cShack(H, v, n)) = {vuij ; 1 ≤ i ≤ pH−2, 1 ≤ j ≤ n, 1 ≤ u ≤ c}∪{xuk ; 1 ≤ k ≤ n+1, 1 ≤ u ≤ c}
and edge set E(cShack(H, v, n)) = {eulj ; 1 ≤ l ≤ qH , 1 ≤ j ≤ n, 1 ≤ u ≤ c}. Thus, the graph
cShack(H, v, n) has |V (cShack(H, v, n))| = c((n − 1)pH + 1) and |E(cShack(H, v, n))| = cnqH .
Since m = pH + qH − 2, then by Lemma 2.1

tHs(cShack(H, v, n)) ≥ dpH+qH+|H|−1
pH+qH

e
= dm+2+cn−1

m+2 e
= dm+cn+1

m+2 e
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Now we will show that tHs(cShack(H, v, n)) ≤ dm+cn+1
m+2 e. The vertex and edge labeling f is

a bijective function f : V (G) ∪ E(G) → {1, 2, . . . , α}. Let w = ju; 1 ≤ j ≤ n, 1 ≤ u ≤ c such
that 1 ≤ w ≤ cn.

f(xuk) = d u
m+2e, 1 ≤ u ≤ c

f(vuij) ∪ f(eulj) =

{
d w
m−(t+1)e; 1 ≤ w ≤ m− t+ 1, 1 ≤ t ≤ m
dw+t−(m+1)

m+2 e+ 1;m− t+ 2 ≤ w ≤ cn, 1 ≤ t ≤ m

Under the labeling f , the total H-weight W (H) =
∑

v∈V (H) f(v) +
∑

e∈E(H) f(e) is W (H) =
{m+2,m+3, . . . ,m+cn+1} which form a consecutive sequence. It implies the set of H−weights
are distinct. Now considering the above label of f , the minimum tHs(cShack(H, v, n)) can be
achieved by the following:

tHs(cShack(H, v, n)) ≤ d cn+m−(m+1)
m+2 e+ 1

= d cn+1
m+2 + m+2

m+2e
= d cn−1m+2 + m+2

m+2e
= dm+cn−1

m+2 e

Thus, tHs(cShack(H, v, n)) ≤ dm+cn−1
m+2 e. It implies that tHs(cShack(H, v, n)) = dm+cn−1

m+2 e. ut

Theorem 2.3 Let G be an amalgamation of any connected graph H, denoted by G =
Amal(H, v, n). Then the following holds

tHs(Amal(H, v, n)) = dr + n− 1

r
e

where r = pH + qH − 1, pH and qH is the number of vertices and edges in H respectively and
n = |H|.

Proof. The vertex set and edge set of the graph Amal(H, v, n) can be split into following
sets: V (Amal(H, v, n)) = {A} ∪ {xij ; 1 ≤ i ≤ pH − 1, 1 ≤ j ≤ n} and E(Amal(H, v, n)) =
{elj ; 1 ≤ l ≤ qH , 1 ≤ j ≤ n}. Thus, the graph Amal(H, v, n) has |V (Amal(H, v, n))| = pG,
and |E(Amal(H, v, n))| = qG. Let n, m be positive integers with n ≥ 2 and m ≥ 3. Thus
|V (Amal(H, v, n))| = pG = n(pH − 1) + 1 and |E(Amal(H, v, n))| = qG = nqH . Then by lemma
2.1,

tHs(Amal(H, v, n)) ≥ dpH+qH+|H|−1
pH+qH

e
= d r+1+n−1

r+1 e
= d r+n

r+1 e
= d r+n−1

r e

Thus, the lower bound tHs(Amal(H, v, n)) ≥ d r+n−1
r e. Now we will prove that

tHs(Amal(H, v, n)) ≤ d r+n−1
r e. The vertex and edge labeling f is a bijective function

f : V (G) ∪ E(G)→ {1, 2, . . . , α}.

f(A) = 1

f(xij) ∪ f(elj) =

{
d j
r−(t−1)e; 1 ≤ j ≤ r − t+ 1, 1 ≤ t ≤ r
d j+t−(r+1)

r e+ 1; r − i+ 2 ≤ j ≤ n, 1 ≤ t ≤ r.

Under the labeling f , the total H-weight W (H) =
∑

v∈V (H) f(v) +
∑

e∈E(H) f(e) is W (H) =
{r+1, r+2, . . . , r+n} form a consecutive sequence. It implies the set of H−weights are distinct.
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Now by considering the above label f , the minimum tHs(Amal(H, v, n)) can be achieved by the
following:

tHs(Amal(H, v, n)) ≤ dn+r−(r+1)
r e+ 1

= dn−1r + r
re

= d r+n−1
r e

It is clear to concludes that tHs(Amal(H, v, n)) = d r+n−1
r e. ut

Theorem 2.4 Let G be a disjoint union of multiple copies c of amalgamation of graph H,
denoted by G = cAmal(H, v, n). Then

tHs(cAmal(H, v, n)) = dr + cn− 1

r
e

where r = pH +qH−1, pH and qH is the number of vertices and edges in H respectively, n = |H|
and c is number of copies of G.

Proof. The vertex set and edge set of the graph G = cAmal(H, v, n) can be split into following
sets: V (G) = {Ak; 1 ≤ k ≤ c} ∪ {xijk; 1 ≤ i ≤ pH − 1, 1 ≤ j ≤ n, 1 ≤ k ≤ c} and
E(G) = {eljk; 1 ≤ j ≤ n, 1 ≤ l ≤ qH , 1 ≤ k ≤ c}. Thus the graph cAmal(H, v, n) has
with |V (cAmal(H, v, n))| = pG, and |E(cAmal(H, v, n))| = pG. Let n, r, and odd c be positive
integers with n ≥ 2 and r, c ≥ 3. Thus |V (G)| = pG = c(n(pH−1)+1) and |E(G)| = qG = cnqH .
Then by lemma 2.1,

tHs(cAmal(H, v, n)) ≥ dpH+qH+|H|−1
pH+qH

e
= d r+1−cn−1

r e
= d r+cn

r+1 e
= d r+cn−1

r e

Thus, the lower bound tHs(cAmal(H, v, n)) ≥ d r+cn−1
r e. Now we will show that

tHs(cAmal(H, v, n)) ≤ d r+cn−1
r e. For any V and E, the labeling as follows. Let w = jk;

1 ≤ j ≤ n, 1 ≤ k ≤ c such that 1 ≤ w ≤ cn.

f(Ak) = 1, 1 ≤ k ≤ c

f(xkij) ∪ f(eklj) =

{
d w
r−(t−1)e; 1 ≤ w ≤ r − t+ 1, 1 ≤ t ≤ r, 1 ≤ k ≤ c
dw+t−(r+1)

r e+ 1; r − t+ 2 ≤ w ≤ cn, 1 ≤ t ≤ r, 1 ≤ k ≤ c.

Under the labeling f , the total H-weight W (H) =
∑

v∈V (H) f(v) +
∑

e∈E(H) f(e) is W (H) =
{r+1, r+2, . . . , r+cn} form a consecutive sequence. It implies the set of H−weights are distinct.
Now considering the above label of f , the minimum tHs(cAmal(H, v, n)) can be achieved by
the following:

tHs(cAmal(H, v, n)) ≤ dw+t−(r+1)
r e+ 1

= d cn+r−r−1
r e+ d rre

= d cn+r−1
r e

It concludes the proof. ut

Theorem 2.5 Let G be a shackle of connected graph Cm graph, denoted by G = Shack(Cm, v, n).
Then

tHs(Shack(Cm, v, n)) = d2m+ n− 1

2m
e

where m is an order of the cycle graph and n number of Cm.
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Proof. The graph Shack(Cm, v, n) is a connected graph with vertex set V (Shack(Cm, v, n)) =
{vij ; 1 ≤ i ≤ pCm−2, 1 ≤ j ≤ n}∪{xk; 1 ≤ k ≤ n+1} and edge set E(Shack(Cm, v, n)) = {elj ; 1 ≤
l ≤ qCm , 1 ≤ j ≤ n}. The cardinalities of the graph Shack(Cm, v, n) are |V (Shack(Cm, v, n))| =
(n− 1)pCm + 1, and |E(Shack(Cm, v, n))| = nqCm , where pCm = |V (Cm)|, and qCm = |E(Cm)|.
Then by Lemma 2.1,

tHs(Shack(Cm, v, n)) ≥ dpCm+qCm+|Cm|−1
pCm+qCm

e
= dm+m+n−1

m+m e
= d2m+n−1

2m e

Now we will show that tHs(Shack(Cm, v, n)) ≤ d2m+n−1
2m e. Define the vertex and edge

labelings f : V (G) ∪ E(G)→ {1, 2, . . . , α} as follows

f(xk) = d k
2me

f(vij) ∪ f(elj) =

{
d j
2m−2−(t+1)e; 1 ≤ j ≤ 2m− t− 1, 1 ≤ t ≤ 2m− 2

d j+t−(2m−2+1)
2m e+ 1; 2m− t ≤ j ≤ n, 1 ≤ t ≤ 2m− 2

Under the labeling f , the total H-weight W (H) =
∑

v∈V (H) f(v) +
∑

e∈E(H) f(e) is W (H) =
{2m, 2m + 1, . . . , 2m + n − 1} form a consecutive sequence. It implies the set of H−weights
are distinct. Now considering the above label of f , the minimum tHs(Shack(Cm, v, n)) can be
achieved by the following:

tHs(Shack(Cm, v, n)) ≤ d j+t−(2m−2+1)
2m e+ 1

= dn+2m−2−(2m−2+1)
2m + 2m

2me
= dn−12m + 2m

2me
= d2m+n−1

2m e

Thus tHs(Shack(Cm, v, n)) ≤ d2m+n−1
2m e, it implies that tHs(Shack(Cm, v, n)) = d2m+n−1

2m e. ut

Theorem 2.6 Let G be a disjoint union of multiple copies c of shackle of graph Cm, denoted
by G = cShack(Cm, v, n). Then

tHs(cShack(Cm, v, n)) = d2m+ cn− 1

2m
e

where m is an order of the cycle graph, n is a number of Cm, and c is number of multiple copies
of G.

Proof. Suppose we denote the vertex and edge sets of the graphG = cShack(Cm, v, n) as follows:
V (cShack(Cm, v, n)) = {vuij ; 1 ≤ i ≤ pCm − 2, 1 ≤ j ≤ n, 1 ≤ u ≤ c} ∪ {xuk ; 1 ≤ k ≤ n + 1, 1 ≤
u ≤ c} and E(cShack(Cm, v, n)) = {eulj ; 1 ≤ l ≤ qCm , 1 ≤ j ≤ n, 1 ≤ u ≤ c}. Thus, the graph
cShack(Cm, v, n) has |V (cShack(Cm, v, n))| = c((n − 1)pCm + 1), and |E(cShack(Cm, v, n))| =
cnqCm , where pCm = |V (Cm)| and qCm = |E(Cm)|. Then by Lemma 2.1

tHs(cShack(Cm, v, n)) ≥ dpCm+qCm+|Cm|−1
pCm+qCm

e
= d2m+cn−1

2m e

Now we will show that tHs(cShack(Cm, v, n)) ≤ d2m+cn−1
2m e by defining the vertex and edge

labeling f : V (G) ∪ E(G) → {1, 2, . . . , α} by the following. Let w = ju; 1 ≤ j ≤ n, 1 ≤ u ≤ c
such that 1 ≤ w ≤ cn.

f(xuk) = d u
2me, 1 ≤ u ≤ c

f(xuij) ∪ f(eulj) =

{
d w
(2m−2)−(t+1)e; 1 ≤ w ≤ 2m− t− 1, 1 ≤ t ≤ 2m− 2

dw+t−(2m−2+1)
2m e+ 1; 2m− t ≤ w ≤ cn, 1 ≤ t ≤ 2m− 2
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Under the labeling f , the total H-weight W (H) =
∑

v∈V (H) f(v) +
∑

e∈E(H) f(e) is W (H) =
{2m, 2m + 1, . . . , 2m + cn − 1} form a consecutive sequence. It implies the set of H−weights
are distinct. Now considering the above label of f , the minimum tHs(cShack(Cm, v, n)) can be
achieved by the following.

tHs(Shack(Cm, v, n)) ≤ dw+t−(2m−2+1)
2m e+ 1

= d cn+(2m−2)−(2m−2+1)
2m + 2m

2me
= d cn−12m + 2m

2me
= d2m+cn−1

2m e

It is clear to conclude that tHs(Shack(Cm, v, n)) = d2m+cn−1
2m e. ut

Theorem 2.7 Let G be an amalgamation of connected graph C3, denoted by G =
Amal(C3, v, n). Then the following holds

tHs(Amal(C3, v, n)) = dn+ 4

5
e

where n is a number of C3.

Proof. Let the graph Amal(C3, v, n) has with |V (G)| = pG, |E(G)| = qG, |V (H)| = |V (C3)| =
pH = pC3 , and |E(H)| = |E(C3)| = qH = qC3 . Suppose we denote the vertex and edge sets
of the graph G = Amal(C3, v, n) as follows: V (G) = {A} ∪ {xij ; 1 ≤ i ≤ 2, 1 ≤ j ≤ n} and
E(G) = {Axij ; 1 ≤ i ≤ 2, 1 ≤ j ≤ n} ∪ {x1jx2j ; 1 ≤ j ≤ n}. Thus, the graph Amal(C3, v, n)
has |V (Amal(C3, v, n))| = 2n + 1, and |E(Amal(C3, v, n))| = 3n, where pC3 = |V (C3)| and
qC3 = |E(C3)|. Then by Lemma 2.1, we have the following

tHs(Amal(C3, v, n)) ≥ dPH+qH+|H|−1
PH+qH

e
= d6+n−1

6 e
= dn+5

6 e
= dn+4

5 e

Thus, the lower bound tHsAmal(C3, v, n)) ≥ dn+4
5 e. Now we will show that

tHs(Amal(C3, v, n)) ≤ dn+4
5 e. The vertex and edge labelings f is a bijective function f :

V (G) ∪ E(G)→ {1, 2, . . . , α}.

f(A) = 1

f(xi,j) ∪ f(Axi,j) ∪ f(xijx2j) =

{
d j
5−(i−1)e; 1 ≤ j ≤ 6− i, 1 ≤ i ≤ 5

d j+i−(6)
5 e+ 1; 7− i ≤ j ≤ n, 1 ≤ i ≤ 5.

Under the labeling f , the total H-weight W (H) =
∑

v∈V (H) f(v) +
∑

e∈E(H) f(e) is W (H) =
{6, 7, . . . , 6 + (n − 1)} which form a consecutive sequence. It implies the set of H−weights
are distinct. Now considering the above label of f , the minimum tHsAmal(C3, v, n)) can be
achieved by the following.

tHs(Amal(C3, v, n)) ≤ d j+i−(6)
5 e+ 1

= d5+n−6
5 + 5

5e
= dn+4

5 e

It concludes the proof. ut
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Theorem 2.8 Let G be a disjoint union of amalgamation of C3 graph, denoted by
cAmal(C3, v, n). Then

tHs(cAmal(C3, v, n)) = dcn+ 4

5
e

Proof. Let the graph cAmal(C3, v, n) has with |V (G)| = pG, |E(G)| = qG, |V (H)| =
|V (C3)| = pH = pC3 , and |E(H)| = |E(C3)| = qH = qC3 . The vertex set and edge set of the
graph G = cAmal(C3, v, n) can be split into following sets: V (G) = {Ak; 1 ≤ k ≤ c} ∪ {xkij ; 1 ≤
i ≤ 2, 1 ≤ j ≤ n, 1 ≤ k ≤ c} and E(G) = {Akxkij ; 1 ≤ i ≤ 2, 1 ≤ j ≤ n, 1 ≤ k ≤ c} ∪ {xk1jxk2j ; 1 ≤
j ≤ n, 1 ≤ k ≤ c}. Let n, m, and odd s be positive integers with n ≥ 2 and r, c ≥ 3. Thus
|V (G)| = pG = c(2n+ 1) and |E(G)| = qG = 3cn. Then by lemma 2.1,

tHs(cAmal(C3, v, n)) ≥ dPH+qH+|H|−1
PH+qH

e
= d6+cn−1

6 e
= d5+cn

6 e
= d4+cn

5 e

Thus, the lower bound tHs(cAmal(C3, v, n)) ≥ d cn+4
5 e. Now we will prove that

tHs(cAmal(H, v, n)) ≤ d cn+4
5 e. Let l = jk; 1 ≤ j ≤ n, 1 ≤ k ≤ c such that 1 ≤ l ≤ cn. For any

V and E, the labeling as follows.

f(Ak) = 1, 1 ≤ k ≤ c

f(xki,j) ∪ f(Akxki,j) ∪ f(xkijx
k
2j) =

{
d l
5−(i−1)e; 1 ≤ l ≤ 6− i, 1 ≤ i ≤ 5, 1 ≤ k ≤ c
d l+i−(6)

5 e+ 1; 7− i ≤ l ≤ cn, 1 ≤ i ≤ 5, 1 ≤ k ≤ c.

Under the labeling f , the total H-weight W (H) =
∑

v∈V (H) f(v) +
∑

e∈E(H) f(e) is W (H) =
{6, 7, . . . , 6 + (cn − 1)} which form a consecutive sequence. It implies the set of H−weights
are distinct. Now considering the above label of f , the minimum tHs(cAmal(C3, v, n)) can be
achieved by the following.

tHs(cAmal(C3, v, n)) ≥ d l+i−(6)
5 e+ 1

= d5+cn−6
5 + 5

5e
= d cn+4

5 e

Thus tHs(c(Amal(C3, v, n))) ≤ d cn+4
5 e, it implies that tHs(c(Amal(C3, v, n))) = d cn+4

5 e. ut

Concluding Remarks
We have found the total H-irregularity strength of shackle and amalgamation of G, namely
tHs(Shack(H, v, n)), tHs(c(Shack(H, v, n))), tHs(Amal(H, v, n)) and tHs(c(Amal(H, v, n))).
Apart from those graphs, the study of the values of tHs are considered to be interesting research
topic as it is a new extension of total edge irregularity strength of G. Therefore, we propose the
following open problem.

Open Problem 2.1 Let G be any connected and disconnected graph, apart from the above
graphs determine the value of tHs(G).

Open Problem 2.2 Let tes(G) and tHs(G) be total edge irregularity strength and total H-
irregularity strength of graph G. Characterize the connection between tes(G) and tHs(G).
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