On the total H-irregularity strength of graphs: A new notion

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2017 J. Phys.: Conf. Ser. 855012004
(http://iopscience.iop.org/1742-6596/855/1/012004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 103.241.206.147
This content was downloaded on 13/07/2017 at 02:51

Please note that terms and conditions apply.

You may also be interested in:

H-Supermagic Labeling on Shrubs Graph and Lm Pn
Risala Ulfatimah, Mania Roswitha and Tri Atmojo Kusmayadi
H-Supermagic Labeling on Coronation of Some Classes of Graphs with a Path
H Sandariria, M Roswitha and T A Kusmayadi
On Rainbow k-Connection Number of Special Graphs and It's Sharp Lower Bound
Ika Hesti Agustin, Dafik, A.W. Gembong et al.
The One Universal Graph - a free and open graph database
Liang S. Ng and Corbin Champion
A generalized Lovasz inequality for perfect graphs
V A Gurvich
Properties of Bottleneck on Complex Networks
Wang Chao-Yang, Wu Jian-Jun and Gao Zi-You
Basic embeddings of graphs and Dynnikov's three-page embedding method
V A Kurlin
A note on 'some physical and chemical indices of clique-inserted lattices' J-B Liu, X-F Pan, J Cao et al.

Non-primitive polycycles and helicenes
Mikhail I Shtogrin

On the total H-irregularity strength of graphs: A new notion

Ika Hesti Agustin ${ }^{1,2}$, Dafik ${ }^{1,3}$, Marsidi ${ }^{1,4}$, Ermita Rizki Albirri ${ }^{1}$
${ }^{1}$ CGANT-University of Jember, Jember, Indonesia
${ }^{2}$ Department of Mathematics, University of Jember, Jember, Indonesia
${ }^{3}$ Department of Mathematics Education, University of Jember, Jember, Indonesia
${ }^{4}$ Department of Mathematics Education, IKIP PGRI of Jember, Jember, Indonesia
E-mail: ikahestiagustin@gmail.com, d.dafik@unej.ac.id, marsidiarin@gmail.com, mitalbi@sci.ui.ac.id

Abstract

A total edge irregularity strength of G has been already widely studied in many papers. The total α-labeling is said to be a total edge irregular α-labeling of the graph G if for every two different edges e_{1} and e_{2}, it holds $w\left(e_{1}\right) \neq w\left(e_{2}\right)$, where $w(u v)=f(u)+f(u v)+f(v)$, for $e=u v$. The minimum α for which the graph G has a total edge irregular α-labeling is called the total edge irregularity strength of G, denoted by tes (G). A natural extension of this concept is by considering the evaluation of the weight is not only for each edge but we consider the weight on each subgraph $H \subseteq G$. We extend the notion of the total α-labeling into a total H-irregular α-labeling. The total α-labeling is said to be a total H-irregular α-labeling of the graph G if for $H \subseteq G$, the total H-weights $W(H)=\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)$ are distinct. The minimum α for which the graph G has a total H-irregular α-labeling is called the total H-irregularity strength of G, denoted by $t H s(G)$. In this paper we initiate to study the $t H s$ of shackle and amalgamation of any graphs and their bound.

Keywords: Total α-labeling, Total H-irregularity strength, shackle of any graph, amalgamation of any graph.

1. Introduction

All graphs in this paper are simple, nontrivial and undirected graphs. A total labeling $f: V(G) \cup E(G) \rightarrow\{1,2,3, \ldots, \alpha\}$ is called a total α-labeling of a graph G. The weight of an edge $u v$ of G, denoted by $w(u v)$, is the sum of the labels of end vertices u and v and also edge $u v$, i.e. $w(u v)=f(u)+f(u v)+f(v)$. The total α-labeling is said to be a total edge irregular α-labeling of the graph G if for every two different edges e_{1} and e_{2}, it holds $w\left(e_{1}\right) \neq w\left(e_{2}\right)$. The minimum α for which the graph G has a total edge irregular α-labeling is called the total edge irregularity strength of G, denoted by $\operatorname{tes}(G)$. A natural extension of this concept is by considering the evaluation of the weight is not only for each edge but we consider the weight on each subgraph $H \subseteq G$. Thus, we extend the notion of the total α-labeling into a total H-irregular α-labeling. The total α-labeling is said to be a total H-irregular α-labeling of the graph G if for $H \subseteq G$, the total H-weights $W(H)=\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)$ are distinct. The minimum α for which the graph G has a total H-irregular α-labeling is called the total H-irregularity strength of G, denoted by $t H s(G)$. The minimum α for which the graph G has a subgraph irregular total α-labeling is called the total H-irregularity strength of $G, t H s(G)$.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

The beginning of the study of the irregularity strength is introduced by Togni et al. [10] and Frieze et al. [4]. By then, there are some result related to the total H-irregularity strength study. Jendrol et al. [6] determined the total edge irregularity strength of complete and bipartite complete graph, Jeyanthi et al. [7] studied about total edge irregularity strength of disjoin union wheel graph, and Baca et al. [2], [3] studied about total edge irregularity strength of generelized of prism graph and any graphs. Furthermore Ahmad et al. [1] found total edge irregularity strength of zigzag graph, as well as Pfender [8] studied about total edge irregularity strength of large graph, and the last Rajasingh et al. [9] also studied total edge irregularity strength of series parallel graph.

In this paper, we study the existence of the total H-irregularity α-labeling of some graph operations, namely shackle and amalgamation of graph G. A shackle of $G_{1}, G_{2}, \ldots, G_{k}$, denoted by $\operatorname{Shack}\left(G_{1}, G_{2}, \ldots, G_{k}\right)$, is any graph constructed from non-trivial connected and ordered graphs $G_{1}, G_{2}, \ldots, G_{k}$ such that for every $1 \leq i, j \leq k$ with $|i-j| \geq 2, G_{i}$ and G_{j} have no common vertex and for every $1 \leq i \leq k-1, G_{i}$ and $G_{i}+1$ share exactly one common vertex, called a linkage vertex, where the $k-1$ linkage vertices are all distinct. Meanwhile, let $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ be a finite collection of graphs and each G_{i} has a fixed vertex $v_{0_{i}}$ or edge $e_{0_{i}}$ called a terminal vertex or edge, respectively [5]. The vertex-amalgamation of $G_{1}, G_{2}, \ldots, G_{n}$ denoted by Amal $\left\{G_{i}, v_{0_{i}}\right\}$, is formed by taking all the G_{i} 's and identifying their terminal vertices. Similarly, the edge-amalgamation of $G_{1}, G_{2}, \ldots, G_{n}$, denoted by $\operatorname{Amal}\left\{G_{i}, e_{0_{i}}\right\}$, is formed by taking all the G_{i} 's and identifying their terminal edges. Furthermore, if $G_{i}{ }^{\prime}$ are isomorphic graphs then we denote such graphs as Shack $\{G, v, n\}$ and Amal $\{G, v, n\}$ for vertex, or Shack $\{G, e, n\}$ and Amal $\{G, e, n\}$ for edge. In this paper we will study the $t H s$ of shackle and amalgamation of any graphs and as well as determine their bound.

2. The Results

Prior to show the values of $t H s$ of those graphs, we will show the lower bound of $t H s$ in general graph by the following lemma.

Lemma 2.1 Given a graph $H \subset G$. Let p_{H}, q_{H} be respectively be number of vertices and edges of H and $|H|$ be the number of subgraphs. The total H-irregularity strength satisfies

$$
t H s(G) \geq\left\lceil\frac{p_{H}+q_{H}+|H|-1}{p_{H}+q_{H}}\right\rceil
$$

Proof. A total α-labeling is a labeling $f: V(G) \cup E(G) \rightarrow\{1,2,3, \ldots, \alpha\}$. The H - irregularity total α-labeling of graph G is a total α-labeling such that for each subgraph $H \subseteq G$, the weight $W(H)=\sum_{v \in V(K)} f(v)+\sum_{e \in E(K)} f(e)$ are all distinct. Furthermore, since we require the minimum α for which the graph G has a total H-irregular α-labeling, the set of the total H-weight should be consecutive, otherwise it will not give a minimum $t H s$. Thus, the set of total H weight is $W(H)=\left\{p_{H}+q_{H}, p_{H}+q_{H}+1, p_{H}+q_{H}+2, \ldots, p_{H}+q_{H}+(|H|-1)\right\}$. On the other hand the maximum possible H weight of graph G is at most $t H s(G)\left(p_{H}+q_{H}\right)$. It implies

$$
\begin{aligned}
t H s(G)\left(p_{H}+q_{H}\right) & \geq p_{H}+q_{H}+|H|-1 \\
t H s(G) & \geq \frac{p_{H}+q_{H}+|H|-1}{p_{H}+q_{H}}
\end{aligned}
$$

Since $t H s(G)$ should be integer, and we need a sharpest lower bound, it implies

$$
t H s(G) \geq\left\lceil\frac{p_{H}+q_{H}+|H|-1}{p_{H}+q_{H}}\right\rceil
$$

It completes the proof.
Now, we are ready to show our main results.

Theorem 2.1 Let $G=\operatorname{Shack}(H, v, n)$ be a shackle of any graph H. Then the total H irregularity strength satisfies

$$
t H s(\operatorname{Shack}(H, v, n))=\left\lceil\frac{m+n+1}{m+2}\right\rceil
$$

where p_{H} and q_{H} are respectively the number of vertices and edges in subgraph $H \subseteq G$ and $m=p_{H}+q_{H}-2$ and $n=|H|$.
Proof. The vertex set and edge set of the graph $\operatorname{Shack}(H, v, n)$ can be split into two following sets: $V(\operatorname{Shack}(H, v, n))=\left\{v_{i j} ; 1 \leq i \leq p_{H}-2,1 \leq j \leq n\right\} \cup\left\{x_{k} ; 1 \leq k \leq n+1\right\}$ and $E(\operatorname{Shack}(H, v, n))=\left\{e_{l j} ; 1 \leq l \leq q_{H}, 1 \leq j \leq n\right\}$. Thus, the graph $\operatorname{Shack}(H, v, n)$ has $|V(\operatorname{Shack}(H, v, n))|=(n-1) p_{H}+1,|E(\operatorname{Shack}(H, v, n))|=n q_{H}$. Since $m=p_{H}+q_{H}-2$, then by Lemma 2.1, we have $t H s(\operatorname{Shack}(H, v, n)) \geq\left\lceil\frac{P_{H}+q_{H}+|H|-1}{P_{H}+q_{H}}\right\rceil=\left\lceil\frac{m+2+n-1}{m+2}\right\rceil=\left\lceil\frac{m+n+1}{m+2}\right\rceil$. Thus, $t H s(\operatorname{Shack}(H, v, n)) \geq\left\lceil\frac{m+n+1}{m+2}\right\rceil$.

Now we will show that $t H s(\operatorname{Shack}(H, v, n)) \leq\left\lceil\frac{m+n+1}{m+2}\right\rceil$. Define f as a vertex and edge labeling of graph $G, f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, \alpha\}$ by the following function.

$$
\begin{aligned}
& f\left(x_{k}\right) \\
& f\left(v_{i j}\right) \cup f\left(e_{l j}\right)=\left\{\begin{array}{l}
\left\lceil\frac{k}{m+2}\right\rceil \\
\left\lceil\frac{j}{m-(t+1)}\right\rceil ; 1 \leq j \leq m-t+1,1 \leq t \leq m \\
\left\lceil\frac{j+t-(m+1)}{m+2}\right\rceil+1 ; m-t+2 \leq j \leq n, 1 \leq t \leq m
\end{array}\right.
\end{aligned}
$$

Under the labeling f, the total H-weight $W(H)=\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)$ is $W(H)=$ $\{m+2, m+3, \ldots, m+n+1\}$ forms a consecutive sequence. It implies the set of H-weights are distinct. By considering the above label f, the minimum $t H s(\operatorname{Shack}(H, v, n))$ can be achieved by the following:

$$
\begin{aligned}
t H s(\operatorname{Shack}(H, v, n)) & \leq\left\lceil\frac{j+t-(m+1)}{m+2}\right\rceil+1, \text { for } j=n, t=m \\
& =\left\lceil\frac{n+m-m-1}{m+2}+\frac{m+2}{m+2}\right\rceil \\
& =\left\lceil\frac{n-1+m+2}{m+2}\right\rceil \\
& =\left\lceil\frac{m+n+1}{m+2}\right\rceil
\end{aligned}
$$

Thus, $t H s(\operatorname{Shack}(H, v, n)) \leq\left\lceil\frac{m+n+1}{m+2}\right\rceil$. It concludes that $t H s(\operatorname{Shack}(H, v, n))=\left\lceil\frac{m+n+1}{m+2}\right\rceil$.
Theorem 2.2 Let $G=c \operatorname{Shack}(H, v, n)$ be disjoint union of multiple copies c of shackle of graph H. Then

$$
t H s(c \operatorname{Shack}(H, v, n))=\left\lceil\frac{m+c n+1}{m+2}\right\rceil
$$

where $m=p_{H}+q_{H}-2, p_{H}$ and q_{H} are the number of vertices and edges in H respectively, $n=|H|$ and c is number of copies of G.

Proof. The graph $G=c \operatorname{Shack}(H, v, n)$ is a diconnected graph with vertex set $V(c \operatorname{Shack}(H, v, n))=\left\{v_{i j}^{u} ; 1 \leq i \leq p_{H}-2,1 \leq j \leq n, 1 \leq u \leq c\right\} \cup\left\{x_{k}^{u} ; 1 \leq k \leq n+1,1 \leq u \leq c\right\}$ and edge set $E(c \operatorname{Shack}(H, v, n))=\left\{e_{l j}^{u} ; 1 \leq l \leq q_{H}, 1 \leq j \leq n, 1 \leq u \leq c\right\}$. Thus, the graph $c \operatorname{Shack}(H, v, n)$ has $|V(c \operatorname{Shack}(H, v, n))|=c\left((n-1) p_{H}+1\right)$ and $|E(c \operatorname{Shack}(H, v, n))|=c n q_{H}$. Since $m=p_{H}+q_{H}-2$, then by Lemma 2.1

$$
\begin{aligned}
t H s(c \operatorname{Shack}(H, v, n)) & \geq\left\lceil\frac{p_{H}+q_{H}+|H|-1}{p_{H}+q_{H}}\right\rceil \\
& =\left\lceil\frac{m+2-1}{m+2}\right\rceil \\
& =\left\lceil\frac{m+c n+1}{m+2}\right\rceil
\end{aligned}
$$

Now we will show that $t H s(c \operatorname{Shack}(H, v, n)) \leq\left\lceil\frac{m+c n+1}{m+2}\right\rceil$. The vertex and edge labeling f is a bijective function $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, \alpha\}$. Let $w=j u ; 1 \leq j \leq n, 1 \leq u \leq c$ such that $1 \leq w \leq c n$.

$$
\begin{array}{ll}
f\left(x_{k}^{u}\right) & =\left\lceil\frac{u}{m+2}\right\rceil, 1 \leq u \leq c \\
f\left(v_{i j}^{u}\right) \cup f\left(e_{l j}^{u}\right) & =\left\{\begin{array}{l}
\left\lceil\frac{w}{m-(t+1)}\right\rceil 1 \leq w \leq m-t+1,1 \leq t \leq m \\
\left\lceil\frac{w+t-m+1)}{m+2}\right\rceil+1 ; m-t+2 \leq w \leq c n, 1 \leq t \leq m
\end{array}\right.
\end{array}
$$

Under the labeling f, the total H-weight $W(H)=\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)$ is $W(H)=$ $\{m+2, m+3, \ldots, m+c n+1\}$ which form a consecutive sequence. It implies the set of H-weights are distinct. Now considering the above label of f, the minimum $t H s(c \operatorname{Shack}(H, v, n))$ can be achieved by the following:

$$
\begin{aligned}
t H s(c \operatorname{Shack}(H, v, n)) & \leq\left\lceil\frac{c n+m-(m+1)}{m+2}\right\rceil+1 \\
& =\left\lceil\frac{c n+1}{m+2}+\frac{m+2}{m+2}\right\rceil \\
& =\left\lceil\frac{c n-1}{m+2}+\frac{m+2}{m+2}\right\rceil \\
& =\left\lceil\frac{m+n-1}{m+2}\right\rceil
\end{aligned}
$$

Thus, $t H s(c \operatorname{Shack}(H, v, n)) \leq\left\lceil\frac{m+c n-1}{m+2}\right\rceil$. It implies that $t H s(c \operatorname{Shack}(H, v, n))=\left\lceil\frac{m+c n-1}{m+2}\right\rceil$.
Theorem 2.3 Let G be an amalgamation of any connected graph H, denoted by $G=$ $\operatorname{Amal}(H, v, n)$. Then the following holds

$$
t H s(\operatorname{Amal}(H, v, n))=\left\lceil\frac{r+n-1}{r}\right\rceil
$$

where $r=p_{H}+q_{H}-1, p_{H}$ and q_{H} is the number of vertices and edges in H respectively and $n=|H|$.

Proof. The vertex set and edge set of the graph $\operatorname{Amal}(H, v, n)$ can be split into following sets: $V(\operatorname{Amal}(H, v, n))=\{A\} \cup\left\{x_{i j} ; 1 \leq i \leq p_{H}-1,1 \leq j \leq n\right\}$ and $E(\operatorname{Amal}(H, v, n))=$ $\left\{e_{l j} ; 1 \leq l \leq q_{H}, 1 \leq j \leq n\right\}$. Thus, the graph $\operatorname{Amal}(H, v, n)$ has $|V(\operatorname{Amal}(H, v, n))|=p_{G}$, and $|E(\operatorname{Amal}(H, v, n))|=q_{G}$. Let n, m be positive integers with $n \geq 2$ and $m \geq 3$. Thus $|V(\operatorname{Amal}(H, v, n))|=p_{G}=n\left(p_{H}-1\right)+1$ and $|E(\operatorname{Amal}(H, v, n))|=q_{G}=n q_{H}$. Then by lemma 2.1,

$$
\begin{aligned}
t H s(\operatorname{Amal}(H, v, n)) & \geq\left\lceil\frac{p_{H}+q_{H}+|H|-1}{p_{H}+q_{H}}\right\rceil \\
& =\left\lceil\frac{r+1+n-1}{r+1}\right\rceil \\
& =\left\lceil\frac{r+n}{r+1}\right\rceil \\
& =\left\lceil\frac{r+n-1}{r}\right\rceil
\end{aligned}
$$

Thus, the lower bound $t H s(\operatorname{Amal}(H, v, n)) \geq\left\lceil\frac{r+n-1}{r}\right\rceil$. Now we will prove that $t H s(\operatorname{Amal}(H, v, n)) \leq\left\lceil\frac{r+n-1}{r}\right\rceil$. The vertex and edge labeling f is a bijective function $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, \alpha\}$.

$$
\begin{aligned}
& f(A) \\
& f\left(x_{i j}\right) \cup f\left(e_{l j}\right)=\left\{\begin{array}{l}
\left\lceil\frac{j}{r-(t-1)}\right\rceil ; 1 \leq j \leq r-t+1,1 \leq t \leq r \\
\left\lceil\frac{j+t-(r+1)}{r}\right\rceil+1 ; r-i+2 \leq j \leq n, 1 \leq t \leq r .
\end{array}\right.
\end{aligned}
$$

Under the labeling f, the total H-weight $W(H)=\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)$ is $W(H)=$ $\{r+1, r+2, \ldots, r+n\}$ form a consecutive sequence. It implies the set of H-weights are distinct.

Now by considering the above label f, the minimum $t H s(\operatorname{Amal}(H, v, n))$ can be achieved by the following:

$$
\begin{aligned}
t H s(\operatorname{Amal}(H, v, n)) & \leq\left\lceil\frac{n+r-(r+1)}{r}\right\rceil+1 \\
& =\left\lceil\frac{n-1}{r}+\frac{r}{r}\right\rceil \\
& =\left\lceil\frac{r+n-1}{r}\right\rceil
\end{aligned}
$$

It is clear to concludes that $t H s(\operatorname{Amal}(H, v, n))=\left\lceil\frac{r+n-1}{r}\right\rceil$.
Theorem 2.4 Let G be a disjoint union of multiple copies c of amalgamation of graph H, denoted by $G=c \operatorname{Amal}(H, v, n)$. Then

$$
t H s(c \operatorname{Amal}(H, v, n))=\left\lceil\frac{r+c n-1}{r}\right\rceil
$$

where $r=p_{H}+q_{H}-1, p_{H}$ and q_{H} is the number of vertices and edges in H respectively, $n=|H|$ and c is number of copies of G.

Proof. The vertex set and edge set of the graph $G=c \operatorname{Amal}(H, v, n)$ can be split into following sets: $V(G)=\left\{A^{k} ; 1 \leq k \leq c\right\} \cup\left\{x_{i j}^{k} ; 1 \leq i \leq p_{H}-1,1 \leq j \leq n, 1 \leq k \leq c\right\}$ and $E(G)=\left\{e_{l j}{ }^{k} ; 1 \leq j \leq n, 1 \leq l \leq q_{H}, 1 \leq k \leq c\right\}$. Thus the graph $c \operatorname{Amal}(H, v, n)$ has with $|V(c \operatorname{Amal}(H, v, n))|=p_{G}$, and $|E(c \operatorname{Amal}(H, v, n))|=p_{G}$. Let n, r, and odd c be positive integers with $n \geq 2$ and $r, c \geq 3$. Thus $|V(G)|=p_{G}=c\left(n\left(p_{H}-1\right)+1\right)$ and $|E(G)|=q_{G}=c n q_{H}$. Then by lemma 2.1,

$$
\begin{aligned}
t H s(c \operatorname{Amal}(H, v, n)) & \geq\left\lceil\frac{p_{H}+q_{H}+|H|-1}{p_{H}+q_{H}}\right\rceil \\
& =\left\lceil\frac{r+1-c n-1}{r}\right\rceil \\
& =\left\lceil\frac{r+c n}{r+1}\right\rceil \\
& =\left\lceil\frac{r+c-1}{r}\right\rceil
\end{aligned}
$$

Thus, the lower bound $t H s(c \operatorname{Amal}(H, v, n)) \geq\left\lceil\frac{r+c n-1}{r}\right\rceil$. Now we will show that $t H s(c \operatorname{Amal}(H, v, n)) \leq\left\lceil\frac{r+c n-1}{r}\right\rceil$. For any V and E, the labeling as follows. Let $w=j k$; $1 \leq j \leq n, 1 \leq k \leq c$ such that $1 \leq w \leq c n$.

$$
\begin{array}{ll}
f\left(A^{k}\right) & =1,1 \leq k \leq c \\
f\left(x_{i j}^{k}\right) \cup f\left(e_{l j}^{k}\right) & =\left\{\begin{array}{l}
\left\lceil\frac{w}{r-(t-1)}\right\rceil ; 1 \leq w \leq r-t+1,1 \leq t \leq r, 1 \leq k \leq c \\
\left\lceil\frac{w+t-(r+1)}{r}\right\rceil+1 ; r-t+2 \leq w \leq c n, 1 \leq t \leq r, 1 \leq k \leq c
\end{array}\right.
\end{array}
$$

Under the labeling f, the total H-weight $W(H)=\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)$ is $W(H)=$ $\{r+1, r+2, \ldots, r+c n\}$ form a consecutive sequence. It implies the set of H-weights are distinct. Now considering the above label of f, the minimum $t H s(c \operatorname{Amal}(H, v, n))$ can be achieved by the following:

$$
\begin{aligned}
t H s(c \operatorname{Amal}(H, v, n)) & \leq\left\lceil\frac{w+t-(r+1)}{r}\right\rceil+1 \\
& =\left\lceil\frac{c n+r-r-1}{r}\right\rceil+\left\lceil\frac{r}{r}\right\rceil \\
& =\left\lceil\frac{c n+r-1}{r}\right\rceil
\end{aligned}
$$

It concludes the proof.
Theorem 2.5 Let G be a shackle of connected graph C_{m} graph, denoted by $G=\operatorname{Shack}\left(C_{m}, v, n\right)$. Then

$$
t H s\left(\operatorname{Shack}\left(C_{m}, v, n\right)\right)=\left\lceil\frac{2 m+n-1}{2 m}\right\rceil
$$

where m is an order of the cycle graph and n number of C_{m}.

Proof. The graph $\operatorname{Shack}\left(C_{m}, v, n\right)$ is a connected graph with vertex set $V\left(\operatorname{Shack}\left(C_{m}, v, n\right)\right)=$ $\left\{v_{i j} ; 1 \leq i \leq p_{C_{m}}-2,1 \leq j \leq n\right\} \cup\left\{x_{k} ; 1 \leq k \leq n+1\right\}$ and edge set $E\left(\operatorname{Shack}\left(C_{m}, v, n\right)\right)=\left\{e_{l j} ; 1 \leq\right.$ $\left.l \leq q_{C_{m}}, 1 \leq j \leq n\right\}$. The cardinalities of the $\operatorname{graph} \operatorname{Shack}\left(C_{m}, v, n\right)$ are $\left|V\left(\operatorname{Shack}\left(C_{m}, v, n\right)\right)\right|=$ $(n-1) p_{C_{m}}+1$, and $\left|E\left(\operatorname{Shack}\left(C_{m}, v, n\right)\right)\right|=n q_{C_{m}}$, where $p_{C_{m}}=\left|V\left(C_{m}\right)\right|$, and $q_{C_{m}}=\left|E\left(C_{m}\right)\right|$. Then by Lemma 2.1,

$$
\begin{aligned}
t H s\left(\operatorname{Shack}\left(C_{m}, v, n\right)\right) & \geq\left\lceil\frac{p_{C_{m}}+q_{C_{m}}+\left|C_{m}\right|-1}{p_{C m}+q_{C}}\right\rceil \\
& =\left\lceil\frac{m+m+n}{m+n}\right\rceil \\
& =\left\lceil\frac{2 m+n-1}{2 m}\right\rceil
\end{aligned}
$$

Now we will show that $t H s\left(\operatorname{Shack}\left(C_{m}, v, n\right)\right) \leq\left\lceil\frac{2 m+n-1}{2 m}\right\rceil$. Define the vertex and edge labelings $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, \alpha\}$ as follows

$$
\begin{aligned}
& f\left(x_{k}\right) \\
& f\left(v_{i j}\right) \cup f\left(e_{l j}\right)=\left\{\begin{array}{l}
\left\lceil\frac{k}{2 m}\right\rceil \\
\left\lceil\frac{j}{2 m-2-(t+1)}\right\rceil ; 1 \leq j \leq 2 m-t-1,1 \leq t \leq 2 m-2 \\
\left\lceil\frac{j+t-(2 m-2+1)}{2 m}\right\rceil+1 ; 2 m-t \leq j \leq n, 1 \leq t \leq 2 m-2
\end{array}\right.
\end{aligned}
$$

Under the labeling f, the total H-weight $W(H)=\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)$ is $W(H)=$ $\{2 m, 2 m+1, \ldots, 2 m+n-1\}$ form a consecutive sequence. It implies the set of H-weights are distinct. Now considering the above label of f, the minimum $t H s\left(\operatorname{Shack}\left(C_{m}, v, n\right)\right)$ can be achieved by the following:

$$
\begin{aligned}
t H s\left(\operatorname{Shack}\left(C_{m}, v, n\right)\right) & \leq\left\lceil\frac{j+t-(2 m-2+1)}{2 m}\right\rceil+1 \\
& =\left\lceil\frac{n+2 m-2-(2 m-2+1)}{2 m}+\frac{2 m}{2 m}\right\rceil \\
& =\left\lceil\frac{n-1}{2 m}+\frac{2 m}{2 m}\right\rceil \\
& =\left\lceil\frac{2 m+n-1}{2 m}\right\rceil
\end{aligned}
$$

Thus $t H s\left(\operatorname{Shack}\left(C_{m}, v, n\right)\right) \leq\left\lceil\frac{2 m+n-1}{2 m}\right\rceil$, it implies that $t H s\left(\operatorname{Shack}\left(C_{m}, v, n\right)\right)=\left\lceil\frac{2 m+n-1}{2 m}\right\rceil$.
Theorem 2.6 Let G be a disjoint union of multiple copies c of shackle of graph C_{m}, denoted by $G=c \operatorname{Shack}\left(C_{m}, v, n\right)$. Then

$$
t H s\left(c \operatorname{Shack}\left(C_{m}, v, n\right)\right)=\left\lceil\frac{2 m+c n-1}{2 m}\right\rceil
$$

where m is an order of the cycle graph, n is a number of C_{m}, and c is number of multiple copies of G.
Proof. Suppose we denote the vertex and edge sets of the graph $G=c \operatorname{Shack}\left(C_{m}, v, n\right)$ as follows: $V\left(c \operatorname{Shack}\left(C_{m}, v, n\right)\right)=\left\{v_{i j}^{u} ; 1 \leq i \leq p_{C_{m}}-2,1 \leq j \leq n, 1 \leq u \leq c\right\} \cup\left\{x_{k}^{u} ; 1 \leq k \leq n+1,1 \leq\right.$ $u \leq c\}$ and $E\left(c \operatorname{Shack}\left(C_{m}, v, n\right)\right)=\left\{e_{l j}^{u} ; 1 \leq l \leq q_{C_{m}}, 1 \leq j \leq n, 1 \leq u \leq c\right\}$. Thus, the graph $c \operatorname{Shack}\left(C_{m}, v, n\right)$ has $\left|V\left(c \operatorname{Shack}\left(C_{m}, v, n\right)\right)\right|=c\left((n-1) p_{C_{m}}+1\right)$, and $\left|E\left(c \operatorname{Shack}\left(C_{m}, v, n\right)\right)\right|=$ $c n q_{C_{m}}$, where $p_{C_{m}}=\left|V\left(C_{m}\right)\right|$ and $q_{C_{m}}=\left|E\left(C_{m}\right)\right|$. Then by Lemma 2.1

$$
\begin{aligned}
t H s\left(c \operatorname{Shack}\left(C_{m}, v, n\right)\right) & \geq\left\lceil\frac{p_{C_{m}}+q_{C_{m}}+\left|C_{m}\right|-1}{D_{m}+q_{C_{m}}}\right\rceil \\
& =\left\lceil\frac{2 m+c m-1}{2 m}\right\rceil
\end{aligned}
$$

Now we will show that $t H s\left(c \operatorname{Shack}\left(C_{m}, v, n\right)\right) \leq\left\lceil\frac{2 m+c n-1}{2 m}\right\rceil$ by defining the vertex and edge labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, \alpha\}$ by the following. Let $w=j u ; 1 \leq j \leq n, 1 \leq u \leq c$ such that $1 \leq w \leq c n$.

$$
\begin{aligned}
& f\left(x_{k}^{u}\right) \\
& f\left(x_{i j}^{u}\right) \cup f\left(e_{l j}^{u}\right)
\end{aligned} \quad=\left\{\begin{array}{l}
\left\lceil\frac{u}{2 m}\right\rceil, 1 \leq u \leq c \\
\left\lceil\frac{(2 m-2)-(t+1)}{}\right\rceil ; 1 \leq w \leq 2 m-t-1,1 \leq t \leq 2 m-2 \\
\left\lceil\frac{w+t-(2 m-2+1)}{2 m}\right\rceil+1 ; 2 m-t \leq w \leq c n, 1 \leq t \leq 2 m-2
\end{array}\right.
$$

Under the labeling f, the total H-weight $W(H)=\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)$ is $W(H)=$ $\{2 m, 2 m+1, \ldots, 2 m+c n-1\}$ form a consecutive sequence. It implies the set of H-weights are distinct. Now considering the above label of f, the minimum $t H s\left(c \operatorname{Shack}\left(C_{m}, v, n\right)\right)$ can be achieved by the following.

$$
\begin{aligned}
t H s\left(\operatorname{Shack}\left(C_{m}, v, n\right)\right) & \leq\left\lceil\frac{w+t-(2 m-2+1)}{2 m}\right\rceil+1 \\
& =\left\lceil\frac{c n+(2 m-2)-(2 m-2+1)}{2 m}+\frac{2 m}{2 m}\right\rceil \\
& =\left\lceil\frac{c n-1}{2 m}+\frac{2 m}{2 m}\right\rceil \\
& =\left\lceil\frac{2 m+c n-1}{2 m}\right\rceil
\end{aligned}
$$

It is clear to conclude that $t H s\left(\operatorname{Shack}\left(C_{m}, v, n\right)\right)=\left\lceil\frac{2 m+c n-1}{2 m}\right\rceil$.
Theorem 2.7 Let G be an amalgamation of connected graph C_{3}, denoted by $G=$ $\operatorname{Amal}\left(C_{3}, v, n\right)$. Then the following holds

$$
t H s\left(\operatorname{Amal}\left(C_{3}, v, n\right)\right)=\left\lceil\frac{n+4}{5}\right\rceil
$$

where n is a number of C_{3}.
Proof. Let the graph $\operatorname{Amal}\left(C_{3}, v, n\right)$ has with $|V(G)|=p_{G},|E(G)|=q_{G},|V(H)|=\left|V\left(C_{3}\right)\right|=$ $p_{H}=p_{C_{3}}$, and $|E(H)|=\left|E\left(C_{3}\right)\right|=q_{H}=q_{C_{3}}$. Suppose we denote the vertex and edge sets of the graph $G=\operatorname{Amal}\left(C_{3}, v, n\right)$ as follows: $V(G)=\{A\} \cup\left\{x_{i j} ; 1 \leq i \leq 2,1 \leq j \leq n\right\}$ and $E(G)=\left\{A x_{i j} ; 1 \leq i \leq 2,1 \leq j \leq n\right\} \cup\left\{x_{1 j} x_{2 j} ; 1 \leq j \leq n\right\}$. Thus, the graph Amal $\left(C_{3}, v, n\right)$ has $\left|V\left(\operatorname{Amal}\left(C_{3}, v, n\right)\right)\right|=2 n+1$, and $\left|E\left(\operatorname{Amal}\left(C_{3}, v, n\right)\right)\right|=3 n$, where $p_{C_{3}}=\left|V\left(C_{3}\right)\right|$ and $q_{C_{3}}=\left|E\left(C_{3}\right)\right|$. Then by Lemma 2.1, we have the following

$$
\begin{aligned}
t H s\left(\operatorname{Amal}\left(C_{3}, v, n\right)\right) & \geq\left\lceil\frac{P_{H}+q_{H}+|H|-1}{P_{H}+q_{H}}\right\rceil \\
& =\left\lceil\frac{6+n}{n}\right\rceil \\
& =\left\lceil\frac{n+5}{6}\right\rceil \\
& =\left\lceil\frac{n+4}{5}\right\rceil
\end{aligned}
$$

Thus, the lower bound $\left.t H s \operatorname{Amal}\left(C_{3}, v, n\right)\right) \geq\left\lceil\frac{n+4}{5}\right\rceil$. Now we will show that $t H s\left(\operatorname{Amal}\left(C_{3}, v, n\right)\right) \leq\left\lceil\frac{n+4}{5}\right\rceil$. The vertex and edge labelings f is a bijective function f : $V(G) \cup E(G) \rightarrow\{1,2, \ldots, \alpha\}$.

$$
\begin{aligned}
& f(A) \\
& f\left(x_{i, j}\right) \cup f\left(A x_{i, j}\right) \cup f\left(x_{i j} x 2 j\right)=\left\{\begin{array}{l}
\left\lceil\frac{j}{5-(i-1)}\right\rceil 1 \leq j \leq 6-i, 1 \leq i \leq 5 \\
\left\lceil\frac{j+i-(6)}{5}\right\rceil+1 ; 7-i \leq j \leq n, 1 \leq i \leq 5 .
\end{array}\right.
\end{aligned}
$$

Under the labeling f, the total H-weight $W(H)=\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)$ is $W(H)=$ $\{6,7, \ldots, 6+(n-1)\}$ which form a consecutive sequence. It implies the set of H-weights are distinct. Now considering the above label of f, the minimum $t H s \operatorname{Amal}\left(C_{3}, v, n\right)$) can be achieved by the following.

$$
\begin{aligned}
t H s\left(\operatorname{Amal}\left(C_{3}, v, n\right)\right) & \leq\left\lceil\frac{j+i-(6)}{5}\right\rceil+1 \\
& =\left\lceil\frac{5+n-6}{5}+\frac{5}{5}\right\rceil \\
& =\left\lceil\frac{n+4}{5}\right\rceil
\end{aligned}
$$

It concludes the proof.

Theorem 2.8 Let G be a disjoint union of amalgamation of C_{3} graph, denoted by $c \operatorname{Amal}\left(C_{3}, v, n\right)$. Then

$$
t H s\left(c \operatorname{Amal}\left(C_{3}, v, n\right)\right)=\left\lceil\frac{c n+4}{5}\right\rceil
$$

Proof. Let the graph $c \operatorname{Amal}\left(C_{3}, v, n\right)$ has with $|V(G)|=p_{G},|E(G)|=q_{G},|V(H)|=$ $\left|V\left(C_{3}\right)\right|=p_{H}=p_{C_{3}}$, and $|E(H)|=\left|E\left(C_{3}\right)\right|=q_{H}=q_{C_{3}}$. The vertex set and edge set of the graph $G=c \operatorname{Amal}\left(C_{3}, v, n\right)$ can be split into following sets: $V(G)=\left\{A^{k} ; 1 \leq k \leq c\right\} \cup\left\{x_{i j}^{k} ; 1 \leq\right.$ $i \leq 2,1 \leq j \leq n, 1 \leq k \leq c\}$ and $E(G)=\left\{A^{k} x_{i j}^{k} ; 1 \leq i \leq 2,1 \leq j \leq n, 1 \leq k \leq c\right\} \cup\left\{x_{1 j}^{k} x_{2 j}^{k} ; 1 \leq\right.$ $j \leq n, 1 \leq k \leq c\}$. Let n, m, and odd s be positive integers with $n \geq 2$ and $r, c \geq 3$. Thus $|V(G)|=p_{G}=c(2 n+1)$ and $|E(G)|=q_{G}=3 c n$. Then by lemma 2.1,

$$
\begin{aligned}
t H s\left(c \operatorname{Amal}\left(C_{3}, v, n\right)\right) & \geq\left\lceil\frac{P_{H}+q_{H}+|H|-1}{P_{H}+q_{H}}\right\rceil \\
& =\left\lceil\frac{6+n-1}{6}\right\rceil \\
& =\left\lceil\frac{5+c n}{6}\right\rceil \\
& =\left\lceil\frac{4+n}{5}\right\rceil
\end{aligned}
$$

Thus, the lower bound $t H s\left(c \operatorname{Amal}\left(C_{3}, v, n\right)\right) \geq\left\lceil\frac{c n+4}{5}\right\rceil$. Now we will prove that $t H s(c \operatorname{Amal}(H, v, n)) \leq\left\lceil\frac{c n+4}{5}\right\rceil$. Let $l=j k ; 1 \leq j \leq n, 1 \leq k \leq c$ such that $1 \leq l \leq c n$. For any V and E, the labeling as follows.

$$
\begin{array}{ll}
f\left(A^{k}\right) & =1,1 \leq k \leq c \\
f\left(x_{i, j}^{k}\right) \cup f\left(A^{k} x_{i, j}^{k}\right) \cup f\left(x_{i j}^{k} x_{2 j}^{k}\right) & =\left\{\begin{array}{l}
\left\lceil\frac{l}{5-(i-1)}\right\rceil ; 1 \leq l \leq 6-i, 1 \leq i \leq 5,1 \leq k \leq c \\
\left\lceil\frac{l+i-(6)}{5}\right\rceil+1 ; 7-i \leq l \leq c n, 1 \leq i \leq 5,1 \leq k \leq c
\end{array}\right.
\end{array}
$$

Under the labeling f, the total H-weight $W(H)=\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)$ is $W(H)=$ $\{6,7, \ldots, 6+(c n-1)\}$ which form a consecutive sequence. It implies the set of H-weights are distinct. Now considering the above label of f, the minimum $t H s\left(c \operatorname{Amal}\left(C_{3}, v, n\right)\right)$ can be achieved by the following.

$$
\begin{aligned}
t H s\left(c \operatorname{Amal}\left(C_{3}, v, n\right)\right) & \geq\left\lceil\frac{l+i-(6)}{5}\right\rceil+1 \\
& =\left\lceil\frac{5+c n-6}{5}+\frac{5}{5}\right\rceil \\
& =\left\lceil\frac{c n+4}{5}\right\rceil
\end{aligned}
$$

Thus $t H s\left(c\left(\operatorname{Amal}\left(C_{3}, v, n\right)\right)\right) \leq\left\lceil\frac{c n+4}{5}\right\rceil$, it implies that $t H s\left(c\left(\operatorname{Amal}\left(C_{3}, v, n\right)\right)\right)=\left\lceil\frac{c n+4}{5}\right\rceil$.

Concluding Remarks

We have found the total H-irregularity strength of shackle and amalgamation of G, namely $t H s(\operatorname{Shack}(H, v, n)), t H s(c(\operatorname{Shack}(H, v, n))), t H s(\operatorname{Amal}(H, v, n))$ and $t H s(c(\operatorname{Amal}(H, v, n)))$. Apart from those graphs, the study of the values of $t H s$ are considered to be interesting research topic as it is a new extension of total edge irregularity strength of G. Therefore, we propose the following open problem.

Open Problem 2.1 Let G be any connected and disconnected graph, apart from the above graphs determine the value of $t H s(G)$.

Open Problem 2.2 Let tes (G) and $t H s(G)$ be total edge irregularity strength and total H irregularity strength of graph G. Characterize the connection between tes (G) and $t H s(G)$.

Acknowledgement

We gratefully acknowledge the support from CGANT - University of Jember of year 2017.

References

[1] Ahmad A and Kamran M S. 2012. Total edge irregularity strength of zigzag graph. Australian Journal of Combinatorics 54 141-149.
[2] Baca M and Kamran M S. 2014. Total edge irregularity strength of generalized prism Applied Mathematics and Computation. 235 168-173.
[3] Baca M, Ahmad A, and Saeed O B A. 2014. On edge irregularity strength of graphs Applied Mathematics and Computation. 243 607-610.
[4] Frieze A., Gould R.J., Karonski M., and Pfender F. 2004. On graph irregularity strength. J, Graph Theory. 41 120-137.
[5] Gross J L, Yellen J and Zhang P. 2014 Handbook of graph Theory. Second Edition CRC Press Taylor and Francis Group
[6] Jendrol S, Miskuf J, and Sotak R. 2010. Total Edge Irregularity Strength of Complete Graph and Complete Bipartite Graph. Discrete Math 310 400-407.
[7] Jeyanthi P and Sudha A. 2014. Total Edge Irregularity Strength of Disjoint Union of Wheel Graphs. Electronic Notes in Discrete Mathematics 48 175-182.
[8] Pfender F. 2012. Total edge irregularity strength of large graph. Discrete Math 312 229-237.
[9] Rajasingh I and Teresa SA. 2015. Total edge irregularity strength of series parallel graph. International Journal of Pure and Applied Mathematics 99 11-12.
[10] Togni O. 1997. Irregularity strength of the toroidal grid. Discrete Math. 165/166 609-620.

