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Abstract. All graphs in this paper are simple, finite, and undirected graph. Let r be a
edges of H. The edge comb product between L and H, denoted by LBH, is a graph obtained
by taking one copy of L and |E(L)| copies of H and grafting the i-th copy of H at the
edges r to the i-th edges of L, we call such a graph as an edge comb product of graph
with subgraph as a terminal of its amalgamation, denoted by G = KBAmal(H,L ⊂ H,n).
The graph G is said to admits an (a, d)-H-antimagic total labeling if there exist a bijection
f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} such that for all subgraphs isomorphic
to H, the total H-weights W (H) =

∑
v∈V (H) f(v) +

∑
e∈E(H) f(e) form an arithmetic

sequence {a, a + d, a + 2d, ..., a + (t − 1)d}, where a and d are positive integers and t is
the number of all subgraphs isomorphic to H. An (a, d)-H-antimagic total labeling f is
called super if the smallest labels appear in the vertices. In this paper, we will study the
super H−antimagicness of disjoint union of edge comb product of graphs with subgraph as a
terminal of its amalgamation.

Keywords: Graph amalgamation, edge comb product, H-Antimagic total labeling.

1. Introduction
Let G = (V (G), E(G)) be a simple, finite, and undirected graph with vertex set V (G) and

edge set E(G). The graph G is said to admit an (a, d)-H-antimagic total labeling if there exist a
bijection f : V (G)∪E(G)→ {1, 2, . . . , |V (G)|+ |E(G)|} such that for all subgraphs isomorphic
to H, the total H-weights W (H) =

∑
v∈V (H) f(v)+

∑
e∈E(H) f(e) form an arithmetic sequence

{a, a + d, a + 2d, ..., a + (t − 1)d}, where a and d are positive integers and t is the number
of all subgraphs isomorphic to H. An (a, d)-H-antimagic total labeling f is called super if
f : V (G)→ {1, 2, . . . , |V (G)|}.

Some results related to the existence of an (a, d)-H-antimagic total labeling can be cited
in [2, 3, 6, 7] and [8, 9, 10, 11, 12]. Inayah et al. in [6] proved that for any H and any
integer k ≥ 2, shack(H, v, k) which contains exactly k subgraphs isomorphic to H admits
H-super antimagic. But they only covered a connected version of shackle of graph when a
vertex as a connector, and their paper did not cover all feasible d. Our paper attempt to solve
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a super (a, d)-H antimagic total labeling of disjoint union of edge comb product of graphs
with subgraph as a terminal of its amalgamation, denoted by G = c(KBAmal(H,L ⊂ H,n)),
where c is number of copies of KBAmal(H,L ⊂ H,n). In this study, we aim to achieve for all
feasible d.

To show those existence, we will use an integer set partition technique introduced by
[1, 3]. This technique is used in determining the feasible difference d. Let n,m, d and k be
positive integers. We consider the partition Pn

m,d(i, j) of the set {1, 2, . . . ,mn} into n columns,

n ≥ 2, m-rows such that the difference between the sum of the numbers in the (j + 1)th
m-rows and the sum of the numbers in the jth m-rows is always equal to the constant d,
where j = 1, 2, . . . , n − 1. Thus, these sums form an arithmetic sequence with the difference
d. By the symbol Pn

m,d(i, j), we denote the jth m-rows in the partition with the difference

d, where j = 1, 2, . . . , n. Let
∑
Pn

m,d(i, j) be the sum of the numbers in Pn
m,d(i, j), thus

d =
∑
Pn

m,d(j + 1)−
∑
Pn

m,d(j).

2. Some Useful Lemma and Corollary
Let G be a disjoint union of comb product of graphs with subgraph as a terminal of

its amalgamation, denoted by G = c(KBAmal(H,L ⊂ H,n)). The graph G is a simple
and disconnected graph with |V (G)| = pG, |E(G)| = qG, |V (H)| = pH , and |E(H)| = qH .
The vertex set and edge set of the graph G = c(KBAmal(H,L ⊂ H,n)) can be split into
following sets: V (G) = {xi,t; 1 ≤ i ≤ pK ; 1 ≤ t ≤ c} ∪ {xi,k,t; 1 ≤ i ≤ pL − 2, 1 ≤ k ≤
qK , 1 ≤ t ≤ c} ∪ {xi,j,k,t; 1 ≤ i ≤ pH − pL, 1 ≤ k ≤ qK , 1 ≤ j ≤ n; 1 ≤ t ≤ c} and
E(G) = {el,k,t; 1 ≤ l ≤ qL, 1 ≤ k ≤ qK , 1 ≤ t ≤ c}∪{el,j,k,t; 1 ≤ l ≤ qH − qL; 1 ≤ j ≤ n; 1 ≤ k ≤
qK ; 1 ≤ t ≤ c}. Thus, the cardinalities of |V (G)| = pG = (pH − pL)ncqK + (pL − 2)cqK + cpK
and |E(G)| = qG = (qH − qL)ncqK + qLcqK .

The upper bound of feasible d such that G = c(KBAmal(H,L ⊂ H,n)) admits a super
(a, d)-H-antimagic total labeling can be obtained in the following lemma.

Lemma 1. [2] Let G be a simple graph of order p and size q. If G is super (a, d)-H-antimagic

total labeling then d ≤ (pG−pH)pH+(qG−qH)qH
n−1 , for pG = |V (G)|, qG = |E(G)|, pH = |V (H)|,

qH = |E(H)|, and n = |Hk|, |Hk| is number of subgraph which is isomorphic to the graph H.

Thus for pG = (pH − pL)ncqK + (pL − 2)cqK + cpK and qG = (qH − qL)ncqK + qLcqK ,
we have the following corollary.

Corrollary 1. For n ≥ 2, if the graph G = c(KBAmal(H,L ⊂ H,n)) admits super (a, d)-H-

antimagic total labeling then d ≤ pH
2 + qH

2 − ncqK(pLpH+qLqH+(pL−2)cqHpH+cpKpH+cqLqKqH
ncqK−1

Theorem 1. [5] If G is connected graph with p vertices and q edges, then p ≤ q + 1

We recall a partition Pn
m,d(i, k) introduced in [4]. We will use this partition for a linear

combination to develop a bijection of vertex and edge label of the main theorem.

Lemma 2. Let n , m and s be positive integers 1 ≤ j ≤ n; 1 ≤ k ≤ s, the
∑m

i=1 P
n,s
m,d1

(i, j, k) =

{a(ns− 1)d iae−a(ns− 1) + i+ (k− 1)a+ (j− 1)as; 1 ≤ i ≤ m} forms an arithmetic sequences
of difference d1 = am.

Proof. For j = 1, 2, ..., n; k = 1, 2, ..., s, it gives that
∑m

i=1 P
n,s
m,d1

(i, j, k) = Pn,s
m,d1

(j, k) =

{m2ns
2 + m

2 (1 − a − asn) −mas + am(js + k)} ←→ Pn,s
m,d1

(j, k) = {m2ns
2 + m

2 (1 − a − asn) −
mas+am(s+1), m

2ns
2 + m

2 (1−a−asn)−mas+am(s+2), . . . , m
2ns
2 + m

2 (1−a−asn)−mas+

am(2s), m
2ns
2 + m

2 (1−a−asn)−mas+am(2s+1), . . . , m
2ns
2 + m

2 (1−a−asn)−mas+am(ns+s)}
forms an arithmetic sequences of difference d1 = am. It concludes the proof. �
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Lemma 3. Let n , m and s be positive integers 1 ≤ j ≤ n; 1 ≤ k ≤ s; and 1 ≤ t ≤ c, the∑m
i=1 P

n,s,c
m,d2

(i, j, k, t) = {(t− 1)a + (k − 1)ac + (j − 1)acs + i + (d iae − 1)(acsn− 1)} forms an
arithmetic sequences of difference d2 = am.

Proof. For j = 1, 2, . . . , n; k = 1, 2, . . . , s, and t = 1, 2, . . . , c, it gives that∑m
i=1 P

n,s,c
m,d2

(i, j, k, t) = Pn,s,c
m,d2

(j, k, t) = {m[(t−1)a+(k−1)ac+(j−1)acs−acsn+a]+(m+m2

2 )+

(acsn−a)(m
2+am
2a )} ←→ Pn,s

m,d2
(j, k) = {m[a−acsn]+(m+m2

2 )+(acsn−a)(m
2+am
2a ),m[a+(k−

1)ac+ (j− 1)acs− acsn+ a] + (m+m2

2 ) + (acsn− a)(m
2+am
2a ), . . . ,m[(c− 1)a+ (s− 1)ac+ (n−

1)acs−acsn+a]+(m+m2

2 )+(acsn−a)(m
2+am
2a ), {m[acsn]+(m+m2

2 )+(acsn−a)(m
2+am
2a ),m[a+

acs−acsn+a] + (m+m2

2 ) + (acsn−a)(m
2+am
2a ), . . . ,m[(c−1)a+ (s−1)ac+ (n−1)acs−acsn+

a] + (m+m2

2 ) + (acsn − a)(m
2+am
2a ) forms an arithmetic sequences of difference d2 = am. It

concludes the proof. �

Lemma 4. Let m ≥ 2 even and s be positive integers 1 ≤ t ≤ c; 1 ≤ k ≤ s, the

∑m
i=1 P

c,s
m,d3

(i, t, k) =

{
{csi + t + (k − 1)c− cs; i ≡ 1 (mod 2)}
{csi− t− (k − 1)c + 1; i ≡ 0 (mod 2)}

form an arithmetic sequences of difference d3 = 0.

Proof. for j = 1, 2, ..., n; k = 1, 2, ..., s it gives
∑m

i=1 P
n,s
m,d3

(i, t, k) = Pn,s
m,d3

(t, k) =

{m2cs+m
2 , m

2cs+m
2 , . . . , m

2cs+m
2 }. It concludes the proof. �

With those lemmas in hand, we ready to show our main result in the following section.

3. Main Results
In this section we will present our main theorem related to the existence of super (a, d)−H

antimagic total labeling of disjoint union of edge comb product of graphs with subgraph as a
terminal of its amalgamation. We will describe a construction of how to obtain theH-antimagic
total labeling from a smallest weight of edge-antimagic vertex labeling of graph G. We note
that if cK is an (a, d)−EAV L graph and H is any graph then c(KBAmal(H,L ⊂ H,n)) ∼= G.

Lemma 5. Let K be a simple, nontrivial, and connected graph. If K admits an (a, d)-EAVL
then d ≤ 2pK−4

qK−1 or d ∈ {1, 2}.

Proof. Suppose K is a connected graph of order pK and size qK . If K admits (a, d)-
edge antimagic vertex labeling then the bijection f(V ) = {1, 2, 3, ..., pK}. The set of edge
weights under vertex labeling f is w(uv) = f(u) + f(v), where uv ∈ E(K). The weights
w(uv) = {a, a+d, a+ 2d, ..., a+ (qK − 1)d} where a is the smallest edge weight. The minimum
possible edge weight under labeling f is at least: 1 + 2, thus a ≥ 3. The largest label is
pK + (pK − 1) Hence a + (qK − 1)d ≤ 2pK − 1. Combining the two inequalities, and also
based on Theorem 1 we obtain the upper bound of feasible d for the graph K is said to be

(a, d)-edge antimagic vertex labeling, namely d ≤ 2(pK−1)−2
qK−1 . Since the minimum size of graph

K is pK − 1 then d ≤ 2(pK−1)−2
(pK−1)−1 = 2pK−4

pK−2 and thus d≤ 2. Furthermore for the upper bound

of disjoint union, we suppose pK = cpK and qK = cqK then d ≤ 2(cpK−1)−2
(cpK−1)−1 = 2cpK−4

cpK−2 . Now,

we will show that d 6= 0. By contradiction, suppose If d = 0 → 0 ≤ 2cpK−4
cpK−2 and thus pK = 2.

Since we study for a graph of order larger than two then pK = 2 is too trivial, thus d = 0 is
not our concern. It concludes that the feasible d ∈ {1, 2}. �

Now we are ready to show our main theorem.
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Theorem 2. Let K,H be a two simple, nontrivial, and connected graphs. If the graph cK
admits an (a, d∗)-EAVL, then G = c(KBAmal(H,L ⊂ H,n)) admits a super (a, d) − H-
antimagic total labeling with d = dv +de, where dv and de are respectively the feasible difference
of partitions of integer set of vertex and edge labels.

Proof. Suppose G has a super (a, d) − H-antimagic total labeling f , we have a map
f : V (G) ∪E(G)→ {1, 2, . . . , (pH − pL)ncqK + (pL − 2)cqK + cpK + (qH − qL)ncqK + qLcqK},
Since the graph cK admits an (a, d∗)-edge antimagic vertex labeling, the edge weight of cK is
{a, a + d, a + 2d, . . . , a + (r− 1)d} where r = 1, 2, . . . , cqK. According to lemma 5 the feasible
difference of graph cK to be (a, d∗)-antimagic vertex graph is d∗ ∈ {1, 2}. Thus, to prove the
theorem we will prove it into two cases, namely for d = 1 and d = 2.

Case 1. For d = 1, we have w1(er) = a + (r − 1) · 1 and the number of pL + qL ∈ L is
odd. By using Lemma 2 and Lemma 3, define the vertex and edge labelings f1 in the following
way:

f1(V(pH−pL)ncqK ) = PncqK
pH−pL,dv(i, j, k, t)⊕ cpK

f1(V(pL−2)cqK ∪ E(qL−1)cqK ) = P cqK
pL−2+(qL−1),dv+de

(i, j, k)⊕ cpK + (pH − pL)ncqK

f1(er) = cqK + 1− r + cpK + (pH − pL)ncqK + (pL − 2 + qL − 1)cqK

f1(EqH−qL)ncqK ) = PncqK
qH−qL,de(i, j, k, t)⊕ cpK + (pH − pL)ncqK + (pL − 2 + qL − 1)cqK

+cqK

The labeling f1 is a bijective function f1 : V (G) ∪ E(G) → {1, 2, . . . , (pH − pL)ncqK + (pL −
2)cqK + cpK + (qH − qL)ncqK + qLcqK}. The H weight under the labeling f1 constitute

W (Hj,k,t) = w(er) +
∑

u∈V (Hj,k,t)

f(u) +
∑

e∈V (Ej,k,t)

f(e)

= (a + (r − 1)) +
∑

(PncqK
pH−pL,dv(i, j, k, t)⊕ cpK) +

∑
(P cqK

pL−2+(qL−1)(i, j, k)⊕
cpK + (pH − pL)ncqK) + cqK + 1− r + cpK + (pH − pL)ncqK + (pL − 2)cqK +∑

(PncqK
qH−qL,de(i, j, k, t)⊕ cpK + (pH − pL)ncqK + (pL − 2 + qL − 1)cqK + cqK)

= (a + (r − 1)) + CncqKpH−pL,dv + dv(j, k, t) + cpK(pH − pL)ncqK + CcqKpL−2+(qL−1),dv+de

+(pL − 2 + qL − 1)(cpK + (pH − pL)ncqK) + cqK + 1− r + cpK + (pH − pL)ncqK

+(pL − 2 + qL − 1)cqK + CncqKqH−qL,de + de(j, k, t) + (qH − qL)(cpK + (pH − pL)ncqK

+(pL − 2 + qL − 1)cqK + cqK)

= a + CncqKpH−pL,dv + cpK(pH − pL)ncqK + CcqKpL−2+(qL−1),dv+de

+(pL − 2 + qL − 1)(cpK + (pH − pL)ncqK) + cqK + cpK + (pH − pL)ncqK

+(pL − 2 + qL − 1)cqK + CncqKqH−qL,de + (qH − qL)(cpK + (pH − pL)ncqK

+(pL − 2 + qL − 1)cqK + cqK) + (de + dv)(j, k, t)

for subgraph Hj,k,t,1 ≤ j ≤ n; 1 ≤ k ≤ cqK ; 1 ≤ t ≤ c.
Case 2. For d = 2, we have w1(er) = a + (r − 1) · 2 and the number of pL + qL is even.

By using Lemma 2, Lemma 3 and Lemma 4, define the vertex and edge labelings f2 in the
following way:
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f2(V(pH−pL)ncqK ) = PncqK
pH−pL,dv(i, j, k, t)⊕ cpK

f2(V(pL−2)cqK ∪ E(qL−2)cqK ) = P cqK
pL−2+(qL−2),dv+de

(i, j, k)⊕ cpK + (pH − pL)ncqK

f2(e
1
r) = cqK + 1− r + cpK + (pH − pL)ncqK + (pL − 2 + qL − 2)cqK

f2(Ee2∈qL) = cqK + 1− r + cpK + (pH − pL)ncqK + (pL − 2 + qL − 2)cqK + cqK

f2(EqH−qL)ncqK ) = PncqK
qH−qL,de(i, j, k, t)⊕ cpK + (pH − pL)ncqK + (pL − 2 + qL − 1)cqK

+2cqK

The labeling f2 is a bijective function f2 : V (G) ∪ E(G) → {1, 2, . . . , (pH − pL)ncqK + (pL −
2)cqK + cpK + (qH − qL)ncqK + qLcqK}. The H weight under the labeling f2 constitute

W (Hj,k,t) = w(er) +
∑

u∈V (Hj,k,t)

f(u) +
∑

e∈V (Ej,k,t)

f(e)

= (a + 2(r − 1)) +
∑

(PncqK
pH−pL,dv(i, j, k, t)⊕ cpK) +

∑
(P cqK

pL−2+(qL−2),dv+de
(i, j, k)⊕

cpK + (pH − pL)ncqK) + cqK + 1− r + cpK + (pH − pL)ncqK + (pL − 2)cqK

+cqK + 1− r + cpK + (pH − pL)ncqK + (pL − 2 + qL − 2)cqK + cqK +∑
(PncqK

qH−qL,de(i, j, k, t)⊕ cpK + (pH − pL)ncqK + (pL − 2 + qL − 2)cqK + 2cqK)

= (a + 2(r − 1)) + CncqKpH−pL,dv + dv(j, k, t) + cpK(pH − pL)ncqK + CcqKpL−2+(qL−2),dv+de

+cqK + 1− r + cpK + (pH − pL)ncqK + (pL − 2)cqK + cqK + 1− r + cpK +

(pH − pL)ncqK + (pL − 2 + qL − 2)cqK + cqK + CncqKqH−qL,de + de(j, k, t)

+(qH − qL)(cpK + (pH − pL)ncqK + (pL − 2 + qL − 2)cqK + 2cqK)ncqK

= (a + CncqKpH−pL,dv + cpK(pH − pL)ncqK + CcqKpL−2+(qL−2),dv+de
+ cqK + cpK +

(pH − pL)ncqK + (pL − 2)cqK + cqK + cpK + (pH − pL)ncqK + (pL − 2 + qL − 2)

cqK + cqK + CncqKqH−qL,de + (qH − qL)(cpK + (pH − pL)ncqK + (pL − 2 + qL − 2)cqK

+2cqK)ncqK + (de + dv)(j, k, t)

for subgraph Hj,k,t, 1 ≤ j ≤ n; 1 ≤ k ≤ cqK ; 1 ≤ t ≤ c.
From the two cases above, it is easy to see if the graph cK admits an (a, d∗)-edge

antimagic vertex labeling then G = c(KBAmal(H,L ⊂ H,n)) admits a super (a, d) − H-
antimagic total labeling with d = dv+de, where dv and de are respectively the feasible difference
of partitions of integer set of vertex and edge labels. �

Concluding Remarks
We have shown the existence of super (a, d) −H antimagic total labeling of disjoint union of
edge comb product of graphs with subgraph as a terminal of its amalgamation, denoted by
G = c(KBAmal(H,L ⊂ H,n)). We have proved that G = c(KBAmal(H,L ⊂ H,n)) admits
a super(a, d)-H antimagic total labeling for almost feasible difference d, namely d = dv + de,
where dv and de are respectively the feasible difference of partitions of integer set of vertex
and edge labels.
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