On super H-antimagicness of an edge comb product of graphs with subgraph as a terminal of its amalgamation

This content has been downloaded from IOPscience. Please scroll down to see the full text. 2017 J. Phys.: Conf. Ser. 855012010
(http://iopscience.iop.org/1742-6596/855/1/012010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 103.241.206.147
This content was downloaded on 13/07/2017 at 03:01

Please note that terms and conditions apply.

You may also be interested in:

101 things you can do with a comb
Christina Astin
Independence numbers and chromatic numbers of the random subgraphs of some distance graphs
LI Bogolubsky, A S Gusev, M M Pyaderkin et al.
H-Supermagic Labeling on Shrubs Graph and Lm Pn
Risala Ulfatimah, Mania Roswitha and Tri Atmojo Kusmayadi
Analyzing complex networks through correlations in centrality measurements
José Ricardo Furlan Ronqui and Gonzalo Travieso
Enumerated graphs and their bilinear forms
V A Gurvich
Super (a, d)-Cycle-Antimagic Total Labeling on Triangular Ladder Graph and Generalized Jahangir Graph
Mania Roswitha, Anna Amanda, Titin Sri Martini et al.
Stable-recurrent non-negative matrices
BM Gurevich

On super \mathcal{H}-antimagicness of an edge comb product of graphs with subgraph as a terminal of its amalgamation

Dafik ${ }^{1,3}$, Ika Hesti Agustin ${ }^{1,2}$,
A. I. Nurvitaningrum ${ }^{1,2}$, R. M. Prihandini ${ }^{1,2}$
${ }^{1}$ CGANT University of Jember, Indonesia
${ }^{2}$ Mathematics Depart. University of Jember, Indonesia
${ }^{3}$ Mathematics Edu. Depart. University of Jember, Indonesia

E-mail: d.dafik@unej.ac.id; ikahesti.fmipa@unej.ac.id

Abstract

All graphs in this paper are simple, finite, and undirected graph. Let r be a edges of H. The edge comb product between L and H, denoted by $L \triangleright H$, is a graph obtained by taking one copy of L and $|E(L)|$ copies of H and grafting the i-th copy of H at the edges r to the i-th edges of L, we call such a graph as an edge comb product of graph with subgraph as a terminal of its amalgamation, denoted by $G=K \unrhd \operatorname{Amal}(H, L \subset H, n)$. The graph G is said to admits an $(a, d)-H$-antimagic total labeling if there exist a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots,|V(G)|+|E(G)|\}$ such that for all subgraphs isomorphic to H, the total H-weights $W(H)=\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)$ form an arithmetic sequence $\{a, a+d, a+2 d, \ldots, a+(t-1) d\}$, where a and d are positive integers and t is the number of all subgraphs isomorphic to H. An (a, d) - H-antimagic total labeling f is called super if the smallest labels appear in the vertices. In this paper, we will study the super \mathcal{H}-antimagicness of disjoint union of edge comb product of graphs with subgraph as a terminal of its amalgamation.

Keywords: Graph amalgamation, edge comb product, \mathcal{H}-Antimagic total labeling.

1. Introduction

Let $G=(V(G), E(G))$ be a simple, finite, and undirected graph with vertex set $V(G)$ and edge set $E(G)$. The graph G is said to admit an $(a, d)-H$-antimagic total labeling if there exist a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots,|V(G)|+|E(G)|\}$ such that for all subgraphs isomorphic to H, the total H-weights $W(H)=\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)$ form an arithmetic sequence $\{a, a+d, a+2 d, \ldots, a+(t-1) d\}$, where a and d are positive integers and t is the number of all subgraphs isomorphic to H. An (a, d) - H-antimagic total labeling f is called super if $f: V(G) \rightarrow\{1,2, \ldots,|V(G)|\}$.

Some results related to the existence of an (a, d) - H-antimagic total labeling can be cited in $[2,3,6,7]$ and $[8,9,10,11,12]$. Inayah et al. in [6] proved that for any H and any integer $k \geq 2$, $\operatorname{shack}(H, v, k)$ which contains exactly k subgraphs isomorphic to H admits H-super antimagic. But they only covered a connected version of shackle of graph when a vertex as a connector, and their paper did not cover all feasible d. Our paper attempt to solve
a super $(a, d)-H$ antimagic total labeling of disjoint union of edge comb product of graphs with subgraph as a terminal of its amalgamation, denoted by $G=c(K \unrhd \operatorname{Amal}(H, L \subset H, n))$, where c is number of copies of $K \unrhd \operatorname{Amal}(H, L \subset H, n)$. In this study, we aim to achieve for all feasible d.

To show those existence, we will use an integer set partition technique introduced by $[1,3]$. This technique is used in determining the feasible difference d. Let n, m, d and k be positive integers. We consider the partition $\mathcal{P}_{m, d}^{n}(i, j)$ of the set $\{1,2, \ldots, m n\}$ into n columns, $n \geq 2, m$-rows such that the difference between the sum of the numbers in the $(j+1)$ th m-rows and the sum of the numbers in the j th m-rows is always equal to the constant d, where $j=1,2, \ldots, n-1$. Thus, these sums form an arithmetic sequence with the difference d. By the symbol $\mathcal{P}_{m, d}^{n}(i, j)$, we denote the j th m-rows in the partition with the difference d, where $j=1,2, \ldots, n$. Let $\sum \mathcal{P}_{m, d}^{n}(i, j)$ be the sum of the numbers in $\mathcal{P}_{m, d}^{n}(i, j)$, thus $d=\sum \mathcal{P}_{m, d}^{n}(j+1)-\sum \mathcal{P}_{m, d}^{n}(j)$.

2. Some Useful Lemma and Corollary

Let G be a disjoint union of comb product of graphs with subgraph as a terminal of its amalgamation, denoted by $G=c(K \unrhd \operatorname{Amal}(H, L \subset H, n))$. The graph G is a simple and disconnected graph with $|V(G)|=p_{G},|E(G)|=q_{G},|V(H)|=p_{H}$, and $|E(H)|=q_{H}$. The vertex set and edge set of the graph $G=c(K \unrhd \operatorname{Amal}(H, L \subset H, n))$ can be split into following sets: $V(G)=\left\{x_{i, t} ; 1 \leq i \leq p_{K} ; 1 \leq t \leq c\right\} \cup\left\{x_{i, k, t} ; 1 \leq i \leq p_{L}-2,1 \leq k \leq\right.$ $\left.q_{K}, 1 \leq t \leq c\right\} \cup\left\{x_{i, j, k, t} ; 1 \leq i \leq p_{H}-p_{L}, 1 \leq k \leq q_{K}, 1 \leq j \leq n ; 1 \leq t \leq c\right\}$ and $E(G)=\left\{e_{l, k, t} ; 1 \leq l \leq q_{L}, 1 \leq k \leq q_{K}, 1 \leq t \leq c\right\} \cup\left\{e_{l, j, k, t} ; 1 \leq l \leq q_{H}-q_{L} ; 1 \leq j \leq n ; 1 \leq k \leq\right.$ $\left.q_{K} ; 1 \leq t \leq c\right\}$. Thus, the cardinalities of $|V(G)|=p_{G}=\left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-2\right) c q_{K}+c p_{K}$ and $|E(G)|=q_{G}=\left(q_{H}-q_{L}\right) n c q_{K}+q_{L} c q_{K}$.

The upper bound of feasible d such that $G=c(K \unrhd \operatorname{Amal}(H, L \subset H, n))$ admits a super (a, d)-H-antimagic total labeling can be obtained in the following lemma.
Lemma 1. [2] Let G be a simple graph of order p and size q. If G is super (a, d) - H-antimagic total labeling then $d \leq \frac{\left(p_{G}-p_{H}\right) p_{H}+\left(q_{G}-q_{H}\right) q_{H}}{n-1}$, for $p_{G}=|V(G)|$, $q_{G}=|E(G)|, p_{H}=|V(H)|$, $q_{H}=|E(H)|$, and $n=\left|H_{k}\right|,\left|H_{k}\right|$ is number of subgraph which is isomorphic to the graph H.

Thus for $p_{G}=\left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-2\right) c q_{K}+c p_{K}$ and $q_{G}=\left(q_{H}-q_{L}\right) n c q_{K}+q_{L} c q_{K}$, we have the following corollary.
Corrollary 1. For $n \geq 2$, if the graph $G=c(K \unrhd \operatorname{Amal}(H, L \subset H, n))$ admits super $(a, d)-H$ antimagic total labeling then $d \leq p_{H}{ }^{2}+q_{H}{ }^{2}-\frac{n c q_{K}\left(p_{L} p_{H}+q_{L} q_{H}+\left(p_{L}-2\right) c q_{H} p_{H}+c p_{K} p_{H}+c q_{L} q_{K} q_{H}\right.}{n c q_{K}-1}$

Theorem 1. [5] If G is connected graph with p vertices and q edges, then $p \leq q+1$
We recall a partition $\mathcal{P}_{m, d}^{n}(i, k)$ introduced in [4]. We will use this partition for a linear combination to develop a bijection of vertex and edge label of the main theorem.
Lemma 2. Let n, m and s be positive integers $1 \leq j \leq n ; 1 \leq k \leq s$, the $\sum_{i=1}^{m} \mathcal{P}_{m, d_{1}}^{n, s}(i, j, k)=$ $\left\{a(n s-1)\left\lceil\frac{i}{a}\right\rceil-a(n s-1)+i+(k-1) a+(j-1) a s ; 1 \leq i \leq m\right\}$ forms an arithmetic sequences of difference $d_{1}=a m$.
Proof. For $j=1,2, \ldots, n ; k=1,2, \ldots, s$, it gives that $\sum_{i=1}^{m} \mathcal{P}_{m, d_{1}}^{n, s}(i, j, k)=\mathcal{P}_{m, d_{1}}^{n, s}(j, k)=$ $\left\{\frac{m^{2} n s}{2}+\frac{m}{2}(1-a-a s n)-m a s+a m(j s+k)\right\} \longleftrightarrow \mathcal{P}_{m, d_{1}}^{n, s}(j, k)=\left\{\frac{m^{2} n s}{2}+\frac{m}{2}(1-a-a s n)-\right.$ $m a s+a m(s+1), \frac{m^{2} n s}{2}+\frac{m}{2}(1-a-a s n)-m a s+a m(s+2), \ldots, \frac{m^{2} n s}{2}+\frac{m}{2}(1-a-a s n)-m a s+$ $\left.a m(2 s), \frac{m^{2} n s}{2}+\frac{m}{2}(1-a-a s n)-m a s+a m(2 s+1), \ldots, \frac{m^{2} n s}{2}+\frac{m}{2}(1-a-a s n)-m a s+a m(n s+s)\right\}$ forms an arithmetic sequences of difference $d_{1}=a m$. It concludes the proof.

Lemma 3. Let n, m and s be positive integers $1 \leq j \leq n ; 1 \leq k \leq s$; and $1 \leq t \leq c$, the $\sum_{i=1}^{m} \mathcal{P}_{m, d_{2}}^{n, s, c}(i, j, k, t)=\left\{(t-1) a+(k-1) a c+(j-1) a c s+i+\left(\left\lceil\frac{i}{a}\right\rceil-1\right)(\right.$ acsn -1$\left.)\right\}$ forms an arithmetic sequences of difference $d_{2}=a m$.
Proof. For $j=1,2, \ldots, n ; k=1,2, \ldots, s$, and $t=1,2, \ldots, c$, it gives that $\sum_{i=1}^{m} \mathcal{P}_{m, d_{2}}^{n, s, c}(i, j, k, t)=\mathcal{P}_{m, d_{2}}^{n, s, c}(j, k, t)=\left\{m[(t-1) a+(k-1) a c+(j-1) a c s-a c s n+a]+\left(\frac{m+m^{2}}{2}\right)+\right.$ $\left.(a c s n-a)\left(\frac{m^{2}+a m}{2 a}\right)\right\} \longleftrightarrow \mathcal{P}_{m, d_{2}}^{n, s}(j, k)=\left\{m[a-a c s n]+\left(\frac{m+m^{2}}{2}\right)+(a c s n-a)\left(\frac{m^{2}+a m}{2 a}\right), m[a+(k-\right.$ $1) a c+(j-1) a c s-a c s n+a]+\left(\frac{m+m^{2}}{2}\right)+(a c s n-a)\left(\frac{m^{2}+a m}{2 a}\right), \ldots, m[(c-1) a+(s-1) a c+(n-$ 1) $a c s-a c s n+a]+\left(\frac{m+m^{2}}{2}\right)+(a c s n-a)\left(\frac{m^{2}+a m}{2 a}\right),\left\{m[a c s n]+\left(\frac{m+m^{2}}{2}\right)+(a c s n-a)\left(\frac{m^{2}+a m}{2 a}\right), m[a+\right.$ $a c s-a c s n+a]+\left(\frac{m+m^{2}}{2}\right)+(a c s n-a)\left(\frac{m^{2}+a m}{2 a}\right), \ldots, m[(c-1) a+(s-1) a c+(n-1) a c s-a c s n+$ $a]+\left(\frac{m+m^{2}}{2}\right)+(a c s n-a)\left(\frac{m^{2}+a m}{2 a}\right)$ forms an arithmetic sequences of difference $d_{2}=a m$. It concludes the proof.

Lemma 4. Let $m \geq 2$ even and s be positive integers $1 \leq t \leq c ; 1 \leq k \leq s$, the

$$
\sum_{i=1}^{m} \mathcal{P}_{m, d_{3}}^{c, s}(i, t, k)=\left\{\begin{array}{l}
\{c s i+t+(k-1) c-c s ; i \equiv 1(\bmod 2)\} \\
\{c s i-t-(k-1) c+1 ; i \equiv 0(\bmod 2)\}
\end{array}\right.
$$

form an arithmetic sequences of difference $d_{3}=0$.
Proof. for $j=1,2, \ldots, n ; k=1,2, \ldots, s$ it gives $\sum_{i=1}^{m} \mathcal{P}_{m, d_{3}}^{n, s}(i, t, k)=\mathcal{P}_{m, d_{3}}^{n, s}(t, k)=$ $\left\{\frac{m^{2} c s+m}{2}, \frac{m^{2} c s+m}{2}, \ldots, \frac{m^{2} c s+m}{2}\right\}$. It concludes the proof.

With those lemmas in hand, we ready to show our main result in the following section.

3. Main Results

In this section we will present our main theorem related to the existence of super $(a, d)-\mathcal{H}$ antimagic total labeling of disjoint union of edge comb product of graphs with subgraph as a terminal of its amalgamation. We will describe a construction of how to obtain the \mathcal{H}-antimagic total labeling from a smallest weight of edge-antimagic vertex labeling of graph G. We note that if $c K$ is an $(a, d)-E A V L$ graph and H is any graph then $c(K \unrhd \operatorname{Amal}(H, L \subset H, n)) \cong G$.
Lemma 5. Let K be a simple, nontrivial, and connected graph. If K admits an $(a, d)-E A V L$ then $d \leq \frac{2 p_{K}-4}{q_{K}-1}$ or $d \in\{1,2\}$.
Proof. Suppose K is a connected graph of order p_{K} and size q_{K}. If K admits (a, d) edge antimagic vertex labeling then the bijection $f(V)=\left\{1,2,3, \ldots, p_{K}\right\}$. The set of edge weights under vertex labeling f is $w(u v)=f(u)+f(v)$, where $u v \in E(K)$. The weights $w(u v)=\left\{a, a+d, a+2 d, \ldots, a+\left(q_{K}-1\right) d\right\}$ where a is the smallest edge weight. The minimum possible edge weight under labeling f is at least: $1+2$, thus $a \geq 3$. The largest label is $p_{K}+\left(p_{K}-1\right)$ Hence $a+\left(q_{K}-1\right) d \leq 2 p_{K}-1$. Combining the two inequalities, and also based on Theorem 1 we obtain the upper bound of feasible d for the graph K is said to be (a, d)-edge antimagic vertex labeling, namely $d \leq \frac{2\left(p_{K}-1\right)-2}{q_{K}-1}$. Since the minimum size of graph K is $p K-1$ then $d \leq \frac{2\left(p_{K}-1\right)-2}{\left(p_{K}-1\right)-1}=\frac{2 p_{K}-4}{p_{K}-2}$ and thus $d \leq 2$. Furthermore for the upper bound of disjoint union, we suppose $p_{K}=c p_{K}$ and $q_{K}=c q_{K}$ then $d \leq \frac{2\left(c p_{K}-1\right)-2}{\left(c p_{K}-1\right)-1}=\frac{2 c p_{K}-4}{c p_{K}-2}$. Now, we will show that $d \neq 0$. By contradiction, suppose If $d=0 \rightarrow 0 \leq \frac{2 c p_{K}-4}{c p_{K}-2}$ and thus $p_{K}=2$. Since we study for a graph of order larger than two then $p_{K}=2$ is too trivial, thus $d=0$ is not our concern. It concludes that the feasible $d \in\{1,2\}$.

Now we are ready to show our main theorem.

Theorem 2. Let K, H be a two simple, nontrivial, and connected graphs. If the graph c_{K} admits an $\left(a, d^{*}\right)-E A V L$, then $G=c(K \unrhd \operatorname{Amal}(H, L \subset H, n))$ admits a super $(a, d)-\mathcal{H}$ antimagic total labeling with $d=d_{v}+d_{e}$, where d_{v} and d_{e} are respectively the feasible difference of partitions of integer set of vertex and edge labels.
Proof. Suppose G has a super $(a, d)-\mathcal{H}$-antimagic total labeling f, we have a map $f: V(G) \cup E(G) \rightarrow\left\{1,2, \ldots,\left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-2\right) c q_{K}+c p_{K}+\left(q_{H}-q_{L}\right) n c q_{K}+q_{L} c q_{K}\right\}$, Since the graph $c K$ admits an $\left(a, d^{*}\right)$-edge antimagic vertex labeling, the edge weight of $c K$ is $\{a, a+d, a+2 d, \ldots, a+(r-1) d\}$ where $r=1,2, \ldots, c q K$. According to lemma 5 the feasible difference of graph $c K$ to be $\left(a, d^{*}\right)$-antimagic vertex graph is $d^{*} \in\{1,2\}$. Thus, to prove the theorem we will prove it into two cases, namely for $d=1$ and $d=2$.

Case 1. For $d=1$, we have $w_{1}\left(e_{r}\right)=a+(r-1) \cdot 1$ and the number of $p_{L}+q_{L} \in L$ is odd. By using Lemma 2 and Lemma 3, define the vertex and edge labelings f_{1} in the following way:

$$
\begin{aligned}
f_{1}\left(V_{\left(p_{H}-p_{L}\right) n c q_{K}}\right)= & P_{p_{H}-p_{L}, d_{v}}^{n c q_{K}}(i, j, k, t) \oplus c p_{K} \\
f_{1}\left(V_{\left(p_{L}-2\right) c q_{K}} \cup E_{\left(q_{L}-1\right) c q_{K}}\right)= & P_{p_{L}-2+\left(q_{L}-1\right), d_{v}+d_{e}}^{c q_{K}}(i, j, k) \oplus c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K} \\
f_{1}\left(e_{r}\right)= & c q_{K}+1-r+c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-2+q_{L}-1\right) c q_{K} \\
f_{1}\left(E_{\left.q_{H}-q_{L}\right) n c q_{K}}\right)= & P_{q_{H}-q_{L}, d_{e}}^{n c q_{K}}(i, j, k, t) \oplus c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-2+q_{L}-1\right) c q_{K} \\
& +c q_{K}
\end{aligned}
$$

The labeling f_{1} is a bijective function $f_{1}: V(G) \cup E(G) \rightarrow\left\{1,2, \ldots,\left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-\right.\right.$ 2) $\left.c q_{K}+c p_{K}+\left(q_{H}-q_{L}\right) n c q_{K}+q_{L} c q_{K}\right\}$. The \mathcal{H} weight under the labeling f_{1} constitute

$$
\begin{aligned}
W\left(H_{j, k, t}\right)= & w_{\left(e_{r}\right)}+\sum_{u \in V\left(H_{j, k, t}\right)} f(u)+\sum_{e \in V\left(E_{j, k, t}\right)} f(e) \\
= & (a+(r-1))+\sum\left(P_{p_{H}-p_{L}, d_{v}}^{n c q_{K}}(i, j, k, t) \oplus c p_{K}\right)+\sum\left(P_{p_{L}-2+\left(q_{L}-1\right)}^{c q_{K}}(i, j, k) \oplus\right. \\
& \left.c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K}\right)+c q_{K}+1-r+c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-2\right) c q_{K}+ \\
& \sum^{n}\left(P_{q_{H}-q_{L}, d_{e}}^{n c q_{K}}(i, j, k, t) \oplus c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-2+q_{L}-1\right) c q_{K}+c q_{K}\right) \\
= & (a+(r-1))+\mathcal{C}_{p_{H}-p_{L}, d_{v}}^{n c q_{K}}+d_{v}(j, k, t)+c p_{K}\left(p_{H}-p_{L}\right) n c q_{K}+\mathcal{C}_{p_{L}-2+\left(q_{L}-1\right), d_{v}+d_{e}}^{c q_{K}} \\
& +\left(p_{L}-2+q_{L}-1\right)\left(c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K}\right)+c q_{K}+1-r+c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K} \\
& +\left(p_{L}-2+q_{L}-1\right) c q_{K}+\mathcal{C}_{q_{H}-q_{L}, d_{e}}^{n c q_{K}}+d_{e}(j, k, t)+\left(q_{H}-q_{L}\right)\left(c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K}\right. \\
& \left.+\left(p_{L}-2+q_{L}-1\right) c q_{K}+c q_{K}\right) \\
= & a+\mathcal{C}_{p_{H}-p_{L}, d_{v}}^{n c q_{K}}+c p_{K}\left(p_{H}-p_{L}\right) n c q_{K}+\mathcal{C}_{p_{L}-2+\left(q_{L}-1\right), d_{v}+d_{e}}^{c q_{K}} \\
& +\left(p_{L}-2+q_{L}-1\right)\left(c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K}\right)+c q_{K}+c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K} \\
& +\left(p_{L}-2+q_{L}-1\right) c q_{K}+\mathcal{C}_{q_{H}-q_{L}, d_{e}}^{n c q_{K}}+\left(q_{H}-q_{L}\right)\left(c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K}\right. \\
& \left.+\left(p_{L}-2+q_{L}-1\right) c q_{K}+c q_{K}\right)+\left(d_{e}+d_{v}\right)(j, k, t)
\end{aligned}
$$

for subgraph $H_{j, k, t}, 1 \leq j \leq n ; 1 \leq k \leq c q_{K} ; 1 \leq t \leq c$.
Case 2. For $d=2$, we have $w_{1}\left(e_{r}\right)=a+(r-1) \cdot 2$ and the number of $p_{L}+q_{L}$ is even. By using Lemma 2, Lemma 3 and Lemma 4, define the vertex and edge labelings f_{2} in the following way:

$$
\begin{aligned}
f_{2}\left(V_{\left(p_{H}-p_{L}\right) n c q_{K}}\right)= & P_{p_{H}-p_{L}, d_{v}}^{n c q_{K}}(i, j, k, t) \oplus c p_{K} \\
f_{2}\left(V_{\left(p_{L}-2\right) c q_{K}} \cup E_{\left(q_{L}-2\right) c q_{K}}\right)= & P_{p_{L}-2+\left(q_{L}-2\right), d_{v}+d_{e}}^{c q_{K}}(i, j, k) \oplus c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K} \\
f_{2}\left(e_{r}^{1}\right)= & c q_{K}+1-r+c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-2+q_{L}-2\right) c q_{K} \\
f_{2}\left(E_{e^{2} \in q_{L}}\right)= & c q_{K}+1-r+c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-2+q_{L}-2\right) c q_{K}+c q_{K} \\
f_{2}\left(E_{\left.q_{H}-q_{L}\right) n c q_{K}}\right)= & P_{q_{H}-q_{L}, d_{e}}^{n c q_{K}}(i, j, k, t) \oplus c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-2+q_{L}-1\right) c q_{K} \\
& +2 c q_{K}
\end{aligned}
$$

The labeling f_{2} is a bijective function $f_{2}: V(G) \cup E(G) \rightarrow\left\{1,2, \ldots,\left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-\right.\right.$ 2) $\left.c q_{K}+c p_{K}+\left(q_{H}-q_{L}\right) n c q_{K}+q_{L} c q_{K}\right\}$. The \mathcal{H} weight under the labeling f_{2} constitute

$$
\begin{aligned}
W\left(H_{j, k, t}\right)= & w_{\left(e_{r}\right)}+\sum_{u \in V\left(H_{j, k, t}\right)} f(u)+\sum_{e \in V\left(E_{j, k, t}\right)} f(e) \\
= & (a+2(r-1))+\sum^{n}\left(P_{p_{H}-p_{L}, d_{v}}^{n c q_{K}}(i, j, k, t) \oplus c p_{K}\right)+\sum\left(P_{p_{L}-2+\left(q_{L}-2\right), d_{v}+d_{e}}^{c q_{K}}(i, j, k) \oplus\right. \\
& \left.c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K}\right)+c q_{K}+1-r+c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-2\right) c q_{K} \\
& +c q_{K}+1-r+c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-2+q_{L}-2\right) c q_{K}+c q_{K}+ \\
& \sum^{n c q_{K}}\left(P_{q_{H}-q_{L}, d_{e}}(i, j, k, t) \oplus c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-2+q_{L}-2\right) c q_{K}+2 c q_{K}\right) \\
= & (a+2(r-1))+\mathcal{C}_{p_{H}-p_{L}, d_{v}}^{n c q_{K}}+d_{v}(j, k, t)+c p_{K}\left(p_{H}-p_{L}\right) n c q_{K}+\mathcal{C}_{p_{L}-2+\left(q_{L}-2\right), d_{v}+d_{e}}^{c q_{K}} \\
& +c q_{K}+1-r+c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-2\right) c q_{K}+c q_{K}+1-r+c p_{K}+ \\
& \left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-2+q_{L}-2\right) c q_{K}+c q_{K}+\mathcal{C}_{q_{H}-q_{L}}^{n c q_{K}}, d_{e}+d_{e}(j, k, t) \\
& +\left(q_{H}-q_{L}\right)\left(c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-2+q_{L}-2\right) c q_{K}+2 c q_{K}\right) n c q_{K} \\
= & \left(a+\mathcal{C}_{p_{H}-p_{L}, d_{v}}^{n c q_{K}}+c p_{K}\left(p_{H}-p_{L}\right) n c q_{K}+\mathcal{C}_{p_{L}-2+\left(q_{L}-2\right), d_{v}+d_{e}}^{c q_{K}}+c q_{K}+c p_{K}+\right. \\
& \left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-2\right) c q_{K}+c q_{K}+c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-2+q_{L}-2\right) \\
& c q_{K}+c q_{K}+\mathcal{C}_{q_{H}-q_{L}, d_{e}}^{n c q_{K}}+\left(q_{H}-q_{L}\right)\left(c p_{K}+\left(p_{H}-p_{L}\right) n c q_{K}+\left(p_{L}-2+q_{L}-2\right) c q_{K}\right. \\
& \left.+2 c q_{K}\right) n c q_{K}+\left(d_{e}+d_{v}\right)(j, k, t)
\end{aligned}
$$

for subgraph $H_{j, k, t}, 1 \leq j \leq n ; 1 \leq k \leq c q_{K} ; 1 \leq t \leq c$.
From the two cases above, it is easy to see if the graph $c K$ admits an $\left(a, d^{*}\right)$-edge antimagic vertex labeling then $G=c(K \unrhd \operatorname{Amal}(H, L \subset H, n))$ admits a super $(a, d)-\mathcal{H}$ antimagic total labeling with $d=d_{v}+d_{e}$, where d_{v} and d_{e} are respectively the feasible difference of partitions of integer set of vertex and edge labels.

Concluding Remarks

We have shown the existence of super $(a, d)-H$ antimagic total labeling of disjoint union of edge comb product of graphs with subgraph as a terminal of its amalgamation, denoted by $G=c(K \unrhd \operatorname{Amal}(H, L \subset H, n))$. We have proved that $G=c(K \unrhd \operatorname{Amal}(H, L \subset H, n))$ admits a super $(a, d)-H$ antimagic total labeling for almost feasible difference d, namely $d=d_{v}+d_{e}$, where d_{v} and d_{e} are respectively the feasible difference of partitions of integer set of vertex and edge labels.

4. Acknowledgments

Acknowledgement We gratefully acknowledge the support from HIKOM Ristek Dikti Grant 2017 \& CGANT - University of Jember.

5. References

[1] M. Bača, L. Brankovic, M. Lascsáková, O., Phanalasy, A. Semaničová-Feňovčíková, On d-antimagic labelings of plane graphs, Electr. J. Graph Theory Appli., 1(1), 28-39, (2013)
[2] Dafik, A.K. Purnapraja, R Hidayat, Cycle-Super Antimagicness of Connected and Disconnected Tensor Product of Graphs, Procedia Computer Science, 74, (2015), 9399
[3] Dafik, Slamin, Dushyant Tanna, Andrea Semaničová-Feňovčíková, Martin Bača, Constructions of H antimagic graphs using smaller edge-antimagic graphs, Ars Combinatoria, 100 (2017), In Press
[4] Dafik, Moh. Hasan, Y.N. Azizah, Ika Hesti Agustin, A Generalized Shackle of Any Graph H Admits a Super H-Antimagic Total Labeling, Mathematics in Computer Science Journal, (2016). Submitted
[5] N.Hartsfield, and G.Ringel. 1994. Pearls in graph theory . London : Accademic Press Limited.
[6] N. Inayah, R. Simanjuntak, A. N. M. Salman, Super $(a, d)-H$-antimagic total labelings for shackles of a connected graph H, The Australasian Journal of Combinatorics, 57 (2013), 127138.
[7] P. Jeyanthi, P. Selvagopal, More classes of H-supermagic Graphs, Intern. J. of Algorithms, Computing and Mathematics 3(1) (2010), 93-108.
[8] A. Lladó and J. Moragas, Cycle-magic graphs, Discrete Math. 307 (2007), 29252933.
[9] T.K. Maryati, A. N. M. Salman, E.T. Baskoro, J. Ryan, M. Miller, On H - supermagic labelings for certain shackles and amalgamations of a connected graph, Utilitas Mathematica, 83 (2010), 333-342.
[10] A. A. G. Ngurah, A. N. M. Salman, L. Susilowati, H-supermagic labeling of graphs, Discrete Math., 310 (2010), 1293-1300.
[11] S.T.R. Rizvi, K. Ali, M. Hussain, Cycle-supermagic labelings of the disjoint union of graphs, Utilitas Mathematica, (2014), in press.
[12] Roswitha, M. and Baskoro, E. T., H-magic covering on some classes of graphs, American Institute of Physics Conference Proceedings 1450 (2012), 135-138.

