On Rainbow k-Connection Number of Special Graphs and It's Sharp Lower Bound

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2017 J. Phys.: Conf. Ser. 855012003
(http://iopscience.iop.org/1742-6596/855/1/012003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 103.241.206.147
This content was downloaded on 13/07/2017 at 02:50

Please note that terms and conditions apply.

You may also be interested in:

H-Supermagic Labeling on Coronation of Some Classes of Graphs with a Path
H Sandariria, M Roswitha and T A Kusmayadi
H-Supermagic Labeling on Shrubs Graph and Lm Pn
Risala Ulfatimah, Mania Roswitha and Tri Atmojo Kusmayadi
Answer to Sharp's letter (1987)
H Weisen
On the total H -irregularity strength of graphs: A new notion
Ika Hesti Agustin, Dafik, Marsidi et al.
The Kac-Ward combinatorial method
N P Dolbilin, Yu M Zinov'ev, M A Shtan'ko et al.
Primitive polycycles and helicenes
M Deza and Mikhail I Shtogrin
On the range of bond percolation thresholds for fully triangulated graphs
John C Wierman

The One Universal Graph - a free and open graph database
Liang S. Ng and Corbin Champion

Energy and Laplacian on Hanoi-type fractal quantum graphs
Patricia Alonso-Ruiz, Daniel J Kelleher and Alexander Teplyaev

On Rainbow k-Connection Number of Special Graphs and It's Sharp Lower Bound

Ika Hesti Agustin ${ }^{1,2}$, Dafik ${ }^{1,3}$, Gembong A.W. ${ }^{1,2}$, Ridho
Alfarisi ${ }^{1,4}$
${ }^{1}$ CGANT, University of Jember, Indonesia
${ }^{2}$ Mathematics Depart. University of Jember, Indonesia
${ }^{3}$ Mathematics Edu. Depart. University of Jember, Indonesia
${ }^{4}$ Department of Mathematics, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia
E-mail: ikahesti.fmipa@unej.ac.id, d.dafik@unej.ac.id

Abstract

Let $G=(V, E)$ be a simple, nontrivial, finite, connected and undirected graph. Let c be a coloring $c: E(G) \rightarrow\{1,2, \ldots, s\}, s \in \mathrm{~N}$. A path of edge colored graph is said to be a rainbow path if no two edges on the path have the same color. An edge colored graph G is said to be a rainbow connected graph if there exists a rainbow $u-v$ path for every two vertices u and v of G. The rainbow connection number of a graph G, denoted by $r c(G)$, is the smallest number of k colors required to edge color the graph such that the graph is rainbow connected. Furthermore, for an l-connected graph G and an integer k with $1 \leq k \leq l$, the rainbow k-connection number $r c_{k}(G)$ of G is defined to be the minimum number of colors required to color the edges of G such that every two distinct vertices of G are connected by at least k internally disjoint rainbow paths. In this paper, we determine the exact values of rainbow connection number of some special graphs and obtain a sharp lower bound.

Keywords: Rainbow k-Connection Number, Special Graphs, Sharp Lower Bound

1. Introduction

Suppose G is a simple connected graph with a set of vertices $V(G)$ and edges $E(G)$. For a further reference please see Gross, et. al. [6]. Let G be a nontrivial connected graph on which it is defined a coloring $c: E(G) \rightarrow\{1,2, \ldots, s\}, s \in N$, of the edges of G, where adjacent edges may be colored the same. A $u-v$ path P in G is a rainbow path if no two edges of P are colored the same. The graph G is rainbow-connected (with respect to c) if G contains a rainbow $u-v$ path for every two vertices u and v of G. In this case, the coloring c is called a rainbow coloring of G. If k colors are used, then c is a rainbow k-coloring. The minimum k for which there exists a rainbow k-coloring of the edges of G is the rainbow connection number $\operatorname{rc}(G)$. The completes concept can be found in Chartrand in [4].

A simple observation can be proposed that if G has n vertices then $r c(G) \leq n-1$ but is not sharp. Since a given spanning tree can be assigned with distinct colors, and color the remaining edges with one of the already used colors then the upper bound of $r c(G) \leq n-1$, see Caro [1] for detail. It is also easy to understand that $r c(G) \geq \operatorname{diam}(G)$, where $\operatorname{diam}(G)$ denotes the diameter of G, Caro in [1]. Thus, it gives the following

$$
\operatorname{diam}(G) \leq r c(G) \leq n-1
$$

There have been some results regarded to rainbow connection numbers. Chandran, et.al. in [2] determined rainbow connection number and connected dominating sets, Chakraborty, et.al. in [3] considered hardness and algorithms for rainbow connectivity. Furthermore, Li et.al. in [7] stated Rainbow connections of graphs - A survey. Also Li et.al. in [8] characterized graphs with rainbow connection number and rainbow connection numbers of some graph operations. Schiermeyer in [10] studied rainbow connection in graphs with minimum degree three.

A well-known result shows that in every l-connected graph G with $l \geq 1$, there are k internally disjoint $u-v$ paths connecting any two distinct vertices u and v for every integer k with $1 \leq k \leq l[9]$. Chartrand et al. [5] defined the rainbow k-connectivity $r c_{k}(G)$ of G to be the minimum integer j for which there exists a j-edge-coloring of G such that for every two distinct vertices u and v of G, there exist at least k internally disjoint $u-v$ rainbow paths.

By the definition of rainbow k-connectivity $r c_{k}(G)$, we realize that it is almost impossible to derive the exact value or a nice bound of the rainbow k-connectivity for a general graph G [9]. To answer the problem: given that any connected graph G, determine the rainbow connection number $r c_{k}(G)$ of any graph G ? It tends to be NP-hard problem. Thus, the study of rainbow k-connectivity of some classes of special graphs is still needed. In this paper we will study the rainbow connection number $r c_{k}(G)$ of Triangular Ladder, Wheel graphs, and edge comb of graph $G=C_{n} \unrhd T L_{m}$ and $G=C_{n} \triangleright K_{m}$. The edge comb between L and H, denoted by $L \triangleright H$, is a graph obtained by taking one copy of L and $|E(L)|$ copies of H and grafting the i-th copy of H at the i-th edges of L. The result show that all the rainbow k-connection number $r c_{k}(G)$ of the graph studied in this paper achieve the minimum value.

2. The Results

Before presenting the main results we need to establish the lower bound of $r c_{k}(G)$ of any graph G such that the graph G is considered to be a k-connected graph. Note that the length of the shortest graph cycle (if any) in a given graph is known as a girth, and the length of a longest cycle is known as the graph circumference.
Theorem 1. Let $d(u, v)$ be a distance between u and $v, C(u, v)$ is a shortest cycle that contains the vertices u and v. If G is 2-connected graph then $r c_{2}(G) \geq \max \{|C(u, v)|-$ $d(u, v), \forall u, v \in V(G)\}$, where $C(u, v)$ and $d(u, v)$ are in one cycle.

Proof. Let G be a connected cyclical graph. Thus, the length of second alternative internally disjoint rainbow path for any two vertices u and v is $|C(u, v)|-d(u, v)$ where $C(u, v)$ is a girth that contain vertices u and v. The greatest lower bound of
$r c_{2}(G) \geq \max \{|C(u, v)|-d(u, v)\}$. By contradiction, if we color the edges of G by any value less than max $\{|C(u, v)|-d(u, v)\}$ then there exist two vertices u and v that do not present two internally disjoint paths.

We can extend the theorem for l-connected graph.
Lemma 1. If G is l-connected graph, $l \geq 2$, then for every two vertices $u, v \in V(G)$, there exist at least $l-1$ cycles of G containing the vertices u and v.

Proof. We can prove this theorem by contradiction. Suppose that there exist two vertices $u, v \in V(G)$ that contain one less than $l-1$ cycles of G. Suppose that the number of cycles that contain $u, v \in V(G)$ is $l-k$ where $k \geq 2$. The set $\left\{C_{i} \mid 1 \leq i \leq l-k\right\}$ is $l-k$ cycles that contain any two vertices in $V(G)$. One cycle is used to make two internally disjoint paths between u and v. Two cycles are used to make three internally disjoint paths between u and v. Since u and v are on $l-k$ cycles then the number of disjoint paths between u and v is $l-k+1$. Since $k \geq 2$ and we have two vertices with $l-k+1$ disjoint paths connecting u and v, then G is $(l-k+1<l)$-connected graph. It is a contradiction.

Theorem 2. Let $d(u, v)$ be a distance between u and $v, C_{i}(u, v)$ be a shortest cycles that contain vertices u and v. Let C_{i} be cycles whose their common edge is uv. If G is l-connected graph then $r_{l}(G) \geq \max \left\{\max \left\{\left|C_{i}(u, v)\right|-d(u, v), 1 \leq i \leq l-1\right\}, \forall u, v \in\right.$ $V(G)\}$, where $C(u, v)$ and $d(u, v)$ are in one cycle.

Proof. If G is l-connected graph, then by Lemma 1 every vertex in $V(G)$ lays on at least $l-1$ cycles. Suppose the element of $\left\{C_{i}(u, v) \mid 1 \leq i \leq l-1 u, v \in V(G)\right\}$ have $l-1$ cycles containing $u, v \in V(G)$, the $l-1$ cycles that contain u and v has to be minimum of size $\left|C_{i}(u, v)\right|$. The number of $r c_{k}(G)$ is at least $\max \left\{\left|C_{i}(u, v)\right|-d(u, v), 1 \leq i \leq l-1\right\}$. Otherwise there exist two vertices u, v that do not give k internally disjoint rainbow path.

Now we will present some classes of graphs which can be determined their rainbow k-connection number.

Theorem 3. Let G be a triangular ladder graph, the rainbow 2-connection number of G is $r c_{2}(G)=n$.

Proof. Suppose $G=T L_{n}$. The graph G has vertex set $V(G)=\left\{x_{i}, y_{i} ; 1 \leq i \leq n\right\}$ and edge set $E(G)=\left\{x_{i} x_{i+1}, y_{i} y_{i+1}, x_{i} y_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{x_{i} y_{i} ; 1 \leq i \leq n\right\}$. Define a color c of the edges $c: E(G) \rightarrow\{1,2, \ldots, s\}, s \in N$:

$$
c(e)= \begin{cases}n-i & , e \in\left\{x_{i} x_{i+1} ; 1 \leq i \leq n-1\right\} \\ i & , e \in\left\{y_{i} y_{i+1} ; 1 \leq i \leq n-1\right\} \\ 1 & , e \in\left\{x_{i} y_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{x_{1} y_{1}\right\} \\ n & , e \in\left\{x_{i} y_{i} ; 2 \leq i \leq n\right\}\end{cases}
$$

It is easy to see that the color $c(e)$ reach a maximum value when $e=x_{i} y_{i}$ and $c(e)=n$. Thus, $r c_{2}(G) \leq n$. Now we will show that $r c_{2}(G) \geq n$. Consider the vertex $u=y_{1}$ and $v=x_{n}$. The vertex u and v lay on the cycle of size $2 n$. Since distance, $d(u, v)=n$, then by Theorem 1 , we have $r c_{2}(G) \geq 2 n-n=n$. It concludes that $r c_{2}(G)=n$.

Figure 1. Graph $G=T L_{5}$ with $r c_{2}(G)=5$

Theorem 4. Let G be a wheel graph of order $n+1$, the rainbow 3-connection number G is $r c_{3}\left(W_{n}\right)=n$.

Proof. Given that $G=W_{n}$. The graph G has vertex set $V(G)=\left\{x_{i} ; 1 \leq i \leq n\right\} \cup\{A\}$ and edge set $E(G)=\left\{A x_{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i} x_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{x_{1} x_{n}\right\}$. Define a color c of the edges $c: E(G) \rightarrow\{1,2, \ldots, s\}, s \in N$:

$$
c(e)= \begin{cases}i, & e \in\left\{x_{i} x_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{A x_{i} ; 1 \leq i \leq n\right\} \\ n, & e \in\left\{x_{1} x_{n}\right\}\end{cases}
$$

It is easy to see that the color $c(e)$ reach a maximum value when $e=x_{1} x_{n}$, thus $r c_{3}\left(W_{n}\right) \leq n$. No we will show that $r c_{3}\left(W_{n}\right) \geq n$. We will use a contradiction. Suppose that $r c_{3}\left(W_{n}\right) \leq n-1$, take $r c_{3}\left(W_{n}\right)=n-1$. Consider edge set $E^{\prime}=\left\{x_{i} x_{i+1} \mid 1 \leq\right.$ $i \leq n-1\} \cup\left\{x_{1} x_{n}\right\}$ and $\left|E^{\prime}\right|=n+1$. If we color $n+1$ edges of E^{\prime} by $n-1$ colors, then there exist $e_{1}, e_{2} \in E^{\prime}$ such that $c\left(e_{1}\right)=c\left(e_{2}\right)$, without loss of generality we can choose $e_{1}=x_{1} x_{2}$ and $e_{2}=x_{i} x_{i+1}$. Since W_{n} is 3-connected graph and $r c_{3}\left(W_{n}\right)=n-1$ then there must exist three disjoint paths between any two vertices. Consider vertex x_{1} and vertex x_{i+1} which give three disjoint paths between x_{1} and x_{i+1}. The first possible rainbow path is $x_{1} A x_{i+1}$, the second is $x_{1} x_{n} x_{n-1} \ldots x_{j}$, however the third path $x_{1} x_{2} \ldots x_{i} x_{i+1}$, for x_{1} and x_{i+1} is not rainbow path as $c\left(x_{1} x_{2}\right)=c\left(x_{i} x_{i+1}\right)$. It is a contradiction, thus $r c_{3}\left(W_{n}\right) \geq n$. It concludes $r c_{3}\left(W_{n}\right)=n$.

Theorem 5. If $G=C_{n} \unrhd T L_{m}$ then $r c(G)=\frac{n}{2}+2 m-2$ for n even and $r c_{2}(G)=2 m+1$ for $n=4$.

Proof. The graph $G=C n \unrhd L t_{m}$ is a connected graph with vertex set $V(G)=\left\{x_{i} \mid 1 \leq\right.$ $i \leq n\} \cup\left\{y_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq m-1\right\} \cup\left\{z_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq m-1\right\}$ and edge set $E(G)=\left\{x_{i} x_{i+1} \mid i \leq i \leq n-1\right\} \cup\left\{x_{n} x_{1}\right\} \cup\left\{x_{i} y_{i, 1} \mid 1 \leq i \leq n\right\} \cup\left\{x_{i+1} z_{i, 1} \mid 1 \leq i \leq\right.$ $n-1\} \cup\left\{x_{1} z_{n, 1}\right\} \cup\left\{y_{i, j} y_{i, j+1} \mid 1 \leq i \leq n, 1 \leq j \leq m-2\right\} \cup\left\{z_{i, j} z_{i, j+1} \mid 1 \leq i \leq n, 1 \leq j \leq\right.$ $m-2\} \cup\left\{y_{i, j} z_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq m-1\right\} \cup\left\{x_{i} z_{i, 1} \mid 1 \leq i \leq n\right\} \cup\left\{y_{i, j} z_{i, j+1} \mid 1 \leq i \leq n, 1 \leq\right.$ $j \leq m-2\}$. The value $|V(G)|=\bar{n}(2 m-1)$ and $|E(\bar{G})|=3 n+2 n(m-2)+2 n(m-1)$. The diameter of $G, \operatorname{diam}(G)=\frac{n}{2}+2(m-1)$. The number $r c(G)$ is given by the following

Figure 2. Graph $G=W_{6}$ with $r c_{3}\left(W_{6}\right)=6$
coloring function:

$$
c(e)= \begin{cases}i \bmod \frac{n}{2} & , e \in\left\{x_{i} x_{i+1} \mid 1 \leq i \leq n-1\right\} \cup \\ & \left\{y_{i, j} z_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq m-1\right\} \\ n \bmod \frac{n}{2}, & e \in\left\{x_{n} x_{1}\right\} \\ \frac{n}{2}+1 & , e \in\left\{x_{i} y_{i, 1} \mid 1 \leq i \leq n\right\} \cup\left\{x_{i} z_{i, 1} \mid 1 \leq i \leq n\right\} \\ \frac{n}{2}+1+j & , e \in\left\{y_{i, j} y_{i, j+1} \mid 1 \leq i \leq n, 1 \leq j \leq m-2\right\} \\ & \cup\left\{y_{i, j} z_{i, j+1} \mid 1 \leq i \leq n, 1 \leq j \leq m-2\right\} \\ \frac{n}{2}+m & , e \in\left\{x_{i+1} z_{i, 1} \mid 1 \leq i \leq n-1\right\} \cup\left\{x_{1} z_{n, 1}\right\} \\ \frac{n}{2}+m+j & , e \in\left\{z_{i, j} z_{i, j+1} \mid 1 \leq i \leq n, 1 \leq j \leq m-2\right\}\end{cases}
$$

The maximum value of function is $c(e)=\frac{n}{2}+2 m-2$ so $r c(G) \leq \frac{n}{2}+2 m-2$. By applying Innequality $1 \operatorname{rc}(G) \geq \frac{n}{2}+2 m-2$, it implies that $r c(G)=\frac{n}{2}+2 m-2$.

The number $r c_{2}(G) \geq 2 m+1$ for $n=4$ and any m, is obtained by coloring mapping:

$$
c(e)= \begin{cases}i \bmod 2 & , e \in\left\{x_{i} x_{i+1} \mid 1 \leq i \leq 3\right\} \\ 2 & , e \in\left\{x_{4} x_{1}\right\} \\ 3 & , e \in\left\{x_{i} y_{i, 1} \mid 1 \leq i \leq n\right\} \cup\left\{x_{i} z_{i, 1} \mid 1 \leq i \leq n\right\} \\ 3+j & , e \in\left\{y_{i, j} y_{i, j+1} \mid 1 \leq i \leq n, 1 \leq j \leq m-2\right\} \\ & \cup\left\{y_{i, j} z_{i, j+1} \mid 1 \leq i \leq n, 1 \leq j \leq m-2\right\} \\ m+2 & , e \in\left\{x_{i+1} z_{i, 1} \mid 1 \leq i \leq n-1\right\} \cup\left\{x_{1} z_{n, 1}\right\} \\ m+2+j & , e \in\left\{z_{i, j} z_{i, j+1} \mid 1 \leq i \leq n, 1 \leq j \leq m-2\right\} \\ 2 m+1 & , e \in\left\{y_{i, j} z_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq m-1\right\}\end{cases}
$$

To prove $\operatorname{rc}_{2}(G) \leq 2 m+1$, consider vertex $y_{2, m-1}$ and vertex $z_{1, m-1}$, the vertex $y_{2, m-1}$ and vertex $z_{1, m-1}$ lay on cycle of size of at least $4 m-1$. The distance between $y_{2, m-1}$ and $z_{1, m-1}$ is $2(m-1)$ so the lengt of remaining shortest path between $y_{2, m-1}$ and $z_{1, m-1}$ is $2 m+1$. This path is the shortest alternative path from $y_{2, m-1}$ to $z_{1, m-1}$ to get the second internally disjoint rainbow path.

Figure 3. Graph edge comb $G=C_{4} \unrhd T L_{3}$ with $r c_{2}(G)=7$.

Theorem 6. If $G=C_{n} \unrhd K_{m}$, then the number $r c(G)=\frac{n}{2}+1$ for n even and $r c_{2}(G)=4$, for $n=4$.

Proof. The graph $G=C_{n} \unrhd K_{m}$ is a connected graph with vertex set $V(G)=\left\{x_{i} \mid 1 \leq i \leq\right.$ $n\} \cup\left\{y_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq m-2\right\}$ and edge set $E(G)=\left\{x_{i} x_{i+1} \mid 1 \leq i \leq n-1\right\} \cup\left\{x_{n} x_{1}\right\} \cup$ $\left\{x_{i} y_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq m-2\right\} \cup\left\{x_{i+1} y_{i, j} \mid 1 \leq i \leq n-1,1 \leq j \leq m-2\right\} \cup\left\{x_{1} y_{n, j} \mid 1 \leq\right.$ $j \leq m-2\} \cup\left(\bigcup_{l=1}^{m-3}\left(\left\{y_{i, l} y_{i, j+l} \mid 1 \leq i \leq n, 1 \leq j \leq m-2-l\right\}\right)\right.$. The number of vertices and edges of G is $|V(G)|=n+n(m-2)$ and $|E(G)|=n\left(1+2(m-2)+\frac{(m-2)(m-3)}{2}\right)$. The Diameter of $G, \operatorname{diam}(G)=\frac{n}{2}+1$

The value $\operatorname{rc}(G)=\frac{n}{2}+1$ obtained by the following edge mapping function:

$$
c(e)= \begin{cases}i \bmod \frac{n}{2} & , e \in\left\{x_{i} x_{i+1} \mid 1 \leq i \leq n-1\right\} \cup \\ & \left\{x_{i} y_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq m-2\right\} \cup \\ & \left(\bigcup _ { l = 1 } ^ { m - 3 } \left(\left\{y_{i, l} y_{i, j+l} \mid 1 \leq i \leq n\right.\right.\right. \\ & 1 \leq j \leq m-2-l\}) \\ n \bmod \frac{n}{2} & , e \in\left\{x_{n} x_{1}\right\} \\ \frac{n}{2}+1 & , e \in\left\{x_{1} y_{n, j} \mid 1 \leq j \leq m-2\right\} \cup \\ & \left\{x_{i+1} y_{i, j} \mid 1 \leq i \leq n-1,1 \leq j \leq m-2\right\}\end{cases}
$$

The maximum value of $c(e)$ is $\frac{n}{2}+1$ so $r c(G) \leq \frac{n}{2}+1$, by applying Innequality 1 $r c(G) \geq \frac{n}{2}+1$ and finally we get $r c(G)=\frac{n}{2}+1$.

Figure 4. Graph edge comb $C_{6} \unrhd K_{5}$ with $r c(G)=4$.

The value $r c_{2}(G) \geq 4$ for $n=4$ and any m, is obtained by the following

$$
c(e)= \begin{cases}i \bmod 2 & , e \in\left\{x_{i} x_{i+1} \mid 1 \leq i \leq 3\right\} \cup\left\{x_{i} y_{i, j} \mid 1 \leq i \leq 4\right. \\ & 1 \leq j \leq m-2\} \cup\left\{y_{i, j} y_{i, j+1} \mid 1 \leq i \leq 4\right. \\ & 1 \leq j \leq m-3\} \\ 4 \bmod 2 & , e \in\left\{x_{4} x_{1}\right\} \\ 3 & , e \in\left\{x_{1} y_{4, j} \mid 1 \leq j \leq m-2\right\} \cup \\ & \left\{x_{i+1} y_{i, j} \mid 1 \leq i \leq 3,1 \leq j \leq m-2\right\} \\ 4 & , e \in\left\{x_{i} y_{i, j} \mid 1 \leq i \leq 4,1 \leq j \leq m-2\right\} \\ & \cup\left(\bigcup _ { l = 1 } ^ { m - 3 } \left(\left\{y_{i, l} y_{i, j+l} \mid 1 \leq i \leq 4\right.\right.\right. \\ & 1 \leq j \leq m-2-l\}-\left\{y_{i, j} y_{i, j+1} \mid 1 \leq i \leq 4\right. \\ & 1 \leq j \leq m-3\})\end{cases}
$$

To prove $\operatorname{rc}_{2}(G) \leq 4$ consider vertex $y_{1, j}$ and $y_{2, k}$ for $1 \leq j, k \leq m-2$. This vertices is contained on cycle with size at least 6 . The distance between $y_{1, j}$ and $y_{2, k}$ is 2 so the lengt of remaining shortest path between $y_{1, j}$ and $y_{2, k}$ is 4 . This path is the shortest alternative path from $y_{1, j}$ to $y_{2, k}$ to make second internally disjoint rainbow path.

Concluding Remarks

We have studied the rainbow k-connection number of G. The result show that all the rainbow k-connection number $r c_{k}(G)$ of the graph studied in this paper achieve the minimum value. We have also characterized any graph to have a minimum k connection number, through the following theorem: If G is l-connected graph then
$r c_{l}(G) \geq \max \left\{\left|C_{i}(u, v)\right|-d(u, v), 1 \leq i \leq l-1\right\}$, where $\left|C_{i}(u, v)\right|$ is a girth that contains the vertices u and v. However, it is just lower bound, we have not found the sharper upper bound of $r c_{k}(G)$ of any graph. Thus we propose the following open problem.

Open Problem 1. Given that any connected graph G, determine a sharp upper bound of the rainbow k-connection number $r c_{k}(G)$ of G.

Acknowledgement

We gratefully acknowledge the support from FUNDAMENTAL Ristek Dikti Grant 2017 \& CGANT - University of Jember.

Reference

[1] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, R. Yuster, On rainbow connection, Electron. J. Combin. 15, R57, 2008
[2] L.S. Chandran, A. Das, D. Rajendraprasad, N.M. Varma, Rainbow connection number and connected dominating sets, Arxiv preprint arXiv:1010.2296v1 [math.CO], 2010
[3] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connectivity, 26th International Symposium on Theoretical Aspects of Computer Science STACS 2009, 243-254, 2009
[4] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133, 85-98, 2008
[5] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, The rainbow connectivity of a graph, Networks 54 (2), 75-81, 2009
[6] J.L. Gross, J. Yellen and P. Zhang, Handbook of Graph Theory, Second Edition, CRC Press, Taylor and Francis Group, 2014
[7] X. Li, Y. Sun, Rainbow connections of graphs - A survey, arXiv:1101.5747v2 [math.CO], 2011
[8] X. Li, Y. Sun, Characterize graphs with rainbow connection number $m-2$ and rainbow connection numbers of some graph operations, Preprint, 2010
[9] Xueliang Li, Yuefang Sun, On the rainbow k-connectivity of complete graphs, Australian Journal Of Combinatorics, 217-226, 2011
[10] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, IWOCA 2009, LNCS 5874, 2009

