PAPER • OPEN ACCESS

Domination Number of Vertex Amalgamation of Graphs

To cite this article: Y Wahyuni et al 2017 J. Phys.: Conf. Ser. 855012059

Related content

- Quantum state-independent contextuality requires 13 rays
Adán Cabello, Matthias Kleinmann and José R Portillo
- Bound of Distance Domination Number of Graph and Edge Comb Product Graph A.W. Gembong, Slamin, Dafik et al.

On the star partition dimension of comb product of cycle and complete graph Ridho Alfarisi, Darmaji and Dafik

View the article online for updates and enhancements.

Domination Number of Vertex Amalgamation of Graphs

Y Wahyuni ${ }^{1}$, M I Utoyo ${ }^{1}$ and Slamin ${ }^{2}$
${ }^{1}$ Department of Mathematics, Airlangga University, Surabaya 60115 Indonesia
${ }^{2}$ Information System Study Programme, University of Jember, Jember 68121 Indonesia
E-mail: yayuk-w@,fst.unair.ac.id

Abstract

For a graph $G=(V, E)$, a subset S of V is called a dominating set if every vertex x in V is either in S or adjacent to a vertex in S. The domination number $\boldsymbol{\gamma}(\boldsymbol{G})$ is the minimum cardinality of the dominating set of G. The dominating set of G with a minimum cardinality denoted by $\boldsymbol{\gamma}(\boldsymbol{G})$-set. Let $G_{1}, G_{2}, \ldots, G_{t}$ be subgraphs of the graph G. If the union of all these subgraphs is G and their intersection is $\{v\}$, then we say that G is the vertex-amalgamation of $G_{1}, G_{2}, \ldots, G_{t}$ at vertex v. Based on the membership of the common vertex v in the $\boldsymbol{\gamma}\left(\boldsymbol{G}_{\boldsymbol{i}}\right)$-set, there exist three conditions to be considered. First, if v elements of every $\boldsymbol{\gamma}\left(\boldsymbol{G}_{\boldsymbol{i}}\right)$-set, second if there is no $\boldsymbol{\gamma}\left(\boldsymbol{G}_{\boldsymbol{i}}\right)$-set containing v, and third if either v is element of $\boldsymbol{\gamma}\left(\boldsymbol{G}_{\boldsymbol{i}}\right)$-set for $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{p}$ or there is no $\boldsymbol{\gamma}\left(\boldsymbol{G}_{\boldsymbol{i}}\right)$-set containing v for $\boldsymbol{p}<\boldsymbol{i} \leq \boldsymbol{t}$. For these three conditions, the domination number of G as vertex-amalgamation of $G_{1}, G_{2}, \ldots, G_{t}$ at vertex v can be determined.

1. Introduction

Several results about domination number $\gamma(G)$ and operation of graphs have been explored by some researchers. Some of these results were obtained by Pavlic and Zerovnik [6], Go and Canoy [2], and Kuziak, Lemanska, and Yero [5]. In this paper, we determined the domination number of vertex amalgamation of graphs.

Suppose G_{1} and G_{2} are subgraphs of a graph $G=(V, E)$ and $v \in V$. The graph G is called vertex amalgamation of G_{1} and G_{2} at vertex v, denoted by $G=G_{1} \bigvee_{\{v\}}^{1} G_{2}$, if $G=G_{1} \cup G_{2}$ and $G_{1} \cap G_{2}=$ $\{v\}$. This vertex amalgamation definition proposed by Yang and Kong [9] and can be generated over more than two subgraphs. Suppose $G_{1}, G_{2}, \ldots, G_{t}$ are subgraphs of G and $v \in V$. If $G=\cup_{i=1}^{t} G_{i}$ and $\bigcap_{i=1}^{t} G_{i}=\{v\}$, then G is a vertex amalgamation of $G_{1}, G_{2}, \ldots, G_{t}$ at vertex v, denoted by $G=$ $\mathrm{V}_{\{v\}}^{1}\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}$. If $G_{1}, G_{2}, \ldots, G_{t}$ has $n_{1}, n_{2}, \ldots, n_{t}$ vertices respectively, then $\bigvee_{\{v\}}^{1}\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}$ has $\sum_{i=1}^{t} n_{i}-t+1$ vertices.

For a survey of some family of graphs, see [1]. The open neighborhood of $v \in V$ is the set $N(v)=\{w \in V ; v w \in E\}$ and the closed neighborhood is $N[v]=N(v) \cup\{v\}$. For a set $S \subseteq V$, the open neighborhood $N(S)$ is defined as $\cup_{v \in S} N(v)$ and the closed neighborhood of S is $N[S]=N(S) \cup S$. A set S of vertices of a graph G is called a dominating set if each vertex of $V-S$ is adjacent to a member of S. It is equivalent to that $N[S]=V$. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of the dominating set of G [3].

Some known results on domination number of some graphs are $\gamma\left(P_{n}\right)=\left\lfloor\frac{n}{3}\right\rfloor$ for $n>1$ and $\gamma\left(C_{n}\right)=$ $\left\lfloor\frac{n}{3}\right\rfloor$ for $n>3$ by Klobucar [4], $\gamma\left(K_{n}\right)=1, \gamma\left(K_{m, n}\right)=\gamma\left(K_{n_{1}, n_{2}, \ldots, n_{k}}\right)=2$ for $m, n>1$ and $n_{i}>1$ by Snyder [7], $\gamma\left(F_{n, k}\right)=n$ for $k>1$, and $\gamma\left(B_{n, k}\right)=n+1$, for $n, k>1$ by Wardani [8], $\gamma\left(L_{n}\right)=\left\lfloor\frac{n+1}{2}\right\rfloor$, and $\gamma\left(P_{n, f}\right)=1$. The bounds of domination number was given by Berge [3], that is, for a graph with order n and the maximum degree $\Delta(G)$ holds $\left\lceil\frac{n}{1+\Delta(G)}\right\rceil \leq \gamma(G) \leq n-\Delta(G)$.

2. Results

We start this section by the observation concerning on the domination number of vertex amalgamation of some complete graphs.
Observation 1. If $G=\mathrm{V}_{\{v\}}^{1}\left\{K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{t}}\right\}$ then $\gamma(G)=1$.
The domination number of vertex amalgamation of a complete k-partite graphs is presented in the following theorem.

Theorem 1.

a. For a complete bipartite graph $K_{m n}$, where $m, n \geq 2$, if $G=\mathrm{V}_{\{v\}}^{1}\left\{K_{m_{1}, n_{1}}, K_{m_{2}, n_{2}}, \ldots, K_{m_{t}, n_{t}}\right\}$ then $\gamma(G)=t+1$.
b. Let a complete multipartite graph H_{i} has cardinality for each partite be more than one. If $G=$ $\mathrm{V}_{\{v\}}^{1}\left\{H_{1}, H_{2}, \ldots, H_{t}\right\}$ then $\gamma(G)=t+1$.

Proof.

a. If $G=\mathrm{V}_{\{v\}}^{1}\left\{K_{m_{1}, n_{1}}, K_{m_{2}, n_{2}}, \ldots, K_{m_{t}, n_{t}}\right\}$ where $m_{i}, n_{i} \geq 2$ and $m_{i} \leq n_{i}$ then the order of G is $|V(G)|=\sum_{i=1}^{t}\left(m_{i}+n_{i}\right)-t+1$ and the maximum degree is $\sum_{i=1}^{t} m_{i} \leq \Delta(G) \leq \sum_{i=1}^{t} n_{i}$. Using Berge, the upper bound of the domination number of G is $\left(\sum_{i=1}^{t}\left(m_{i}+n_{i}\right)-t+1\right)-\sum_{i=1}^{t} n_{i}=$ $\sum_{i=1}^{t} m_{i}-t+1$. Because $m_{i} \geq 2$ then $\sum_{i=1}^{t} m_{i}-t+1 \geq t+1$ so that the least upper bound is $\gamma(G) \leq t+1$. Suppose there is $T \subseteq V(G)$ which $|T|=t$. Let $V\left(K_{m_{i} n_{i}}\right)=V_{i} \cup V_{v_{i}}$ where $V_{v_{i}}$ is the vertex partite which consists of v. If $v \in T$ then there is V_{j} such that $x_{j} \notin T$ for every $x_{j} \in V_{j}$. So, for every $y_{j} \in V_{v_{j}}$ which $y_{j} \neq v$ holds $y_{j} \in V(G)-T, y_{j} \sim x_{j}$ but $y_{j}+v$. If $v \notin T$ then there are two conditions. First, there exists a $z_{i} \in V\left(K_{m_{i}, n_{i}}\right)$ for every i such that $z_{i} \in T$. In this case, every vertex which belongs to the same partite of z adjacent with no element of T. Second, there exists $K_{m_{i}, n_{i}}$ such that no vertex of $K_{m_{i}, n_{i}}$ belongs to T. In this case, every vertiex of $K_{m_{i} n_{i}}$ except v is not adjacent to the element of T. It's means that T is not dominating set.
b. Let $S=\left\{v, a_{1}, a_{2}, \ldots, a_{t}\right\}$ where $a_{i} \in H_{i}$ and a_{i} belongs to the diffferent partite with v. For every $x \in(V(G)-S)$ holds: (i) if x belongs to the same partite with v then $x \sim a_{i}$ for some i; (ii) if x belongs to the same partite with a_{i} then $x \sim v$: and (iii) if x belongs to the diferrent partite with neither v and a_{i} then both $x \sim v$ and $x \sim a_{i}$ sor some i. So S is a dominating set. Suppose there is $T \subseteq V(G)$ which $|T|=t$. If $v \in T$ then there is H_{i} such that no element of this set belongs to T except v. It implies that the elements of H_{i} which belong to the same partite with v adjacent just with the vertex in the partite that not consist of v. If $v \notin T$ then there are two cases. First, there is exactly a vertex x of H_{i} belongs to T. In this case, every vertex belongs to the same partite with x has not adjacent with x. Second, there exists H_{i} such that no vertex of H_{i} belongs to T. So, every vertex of this H_{i} was not adjacent with any element of T.
The following theorem presents the domination number of vertex amalgamation of some cycles.
Theorem 2. If $G=\bigvee_{\{v\}}^{1}\left\{C_{n_{1}}, C_{n_{2}}, \ldots, C_{n_{t}}\right\}$ then $\gamma(G)=\sum_{i=1}^{t}\left[\frac{n_{i}}{3}\right]-t+1$.
Proof. Let $V\left(C_{n_{i}}\right)=\left\{v_{i, j} ; i=1, \ldots, t\right.$, and $\left.\mathrm{j}=1, \ldots, n_{i}\right\}$. Without loss of generality let $v=v_{i, 1}$ be the common vertex. Let $S=\left\{v_{i, 1+3 j} ; i=1, \ldots, t\right.$ and $\left.j=0,1, \ldots,\left\lceil\frac{n_{i}}{3}\right\rceil-1\right\}$. For every $x \in(V(G)-S)$ then $x=v_{i, k}$ where $i=1, \ldots, t$ and $k \in\left\{2,3, \ldots, n_{i} ; k \not \equiv 1(\bmod 3)\right\}$ such that there is $y \in S$ with $x \sim y$. So S is a dominating set. It is clear that $|S|=1+\sum_{i=1}^{t}\left(\left\lceil\frac{n_{i}}{3}\right\rceil-1\right)=\sum_{i=1}^{t}\left[\frac{n_{i}}{3}\right]-t+1$. Suppose there exist $T \subseteq V(G)$ which $|T|=\sum_{i=1}^{t}\left(\left[\frac{n_{i}}{3}\right]-1\right)$. If $v \in T$ then there is $C_{n_{i}}$ such that $\gamma\left(C_{n_{i}}\right)=\left\lceil\frac{n_{i}}{3}\right]-1$. If $v \notin T$ then $\gamma\left(C_{n_{i}}\right)=\left\lceil\frac{n_{i}}{3}\right\rceil-1$ for every $C_{n_{i}}$.

A specially case of Theorem 2 , if the cycles are isomorphic, that is, if $n_{1}=n_{2}=\cdots=n_{t}=n$, then $\gamma(G)=t\left\lceil\frac{n}{3}\right\rceil-t+1$.

The following theorem presents the domination number of vertex amalgamation of some paths.
Theorem 3. If $G=\mathrm{V}_{\{v\}}^{1}\left\{P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{t}}\right\}$ then

$$
\gamma(G)=\left\{\begin{array}{l}
\sum_{i=1}^{t}\left\lceil\frac{n_{i}}{3}\right\rceil-t+1, \text { if } v \text { belongs to every } \gamma\left(P_{n_{i}}\right)-\text { set } \\
\sum_{i=1}^{t}\left\lceil\frac{n_{i}}{3}\right\rceil \quad, \text { if } v \text { has not belongs to any } \gamma\left(P_{n_{i}}\right)-\text { set }
\end{array}\right.
$$

Proof. Let $U=\{v\} \cup\{w \in V(G) ; w \sim v\}$. For induced subgraph $\langle U\rangle$, it holds $G-\langle U\rangle=\bigcup_{i=1}^{t}\left(P_{n_{i}-}\langle U\rangle\right)$ such that $\gamma(G-\langle U\rangle)=\gamma\left(\bigcup_{i=1}^{t}\left(P_{n_{i}-}\langle U\rangle\right)\right)=\sum_{i=1}^{t} \gamma\left(P_{n_{i}-}\langle U\rangle\right)$. If v belongs to every $\gamma\left(P_{n_{i}}\right)$-set then $\gamma\left(P_{n_{i}-}\langle U\rangle\right)=\gamma\left(P_{n_{i}}\right)-1=\left\lceil\frac{n_{i}}{3}\right\rceil-1$. It is clear that $\gamma(\langle U\rangle)=1$. So we have $\gamma(G)=\gamma(G-\langle U\rangle)+$ $\gamma(\langle U\rangle)=\sum_{i=1}^{t}\left(\left\lceil\frac{n_{i}}{3}\right\rceil-1\right)+1=\sum_{i=1}^{t}\left\lceil\frac{n_{i}}{3}\right\rceil-t+1$. If v has not belongs to any $\gamma\left(P_{n_{i}}\right)$-set then $v \sim z_{i}$ which z_{i} belongs to $\gamma\left(P_{n_{i}}\right)$-set. In this case v is independent to the $\gamma\left(P_{n_{i}}\right)$, so for $\gamma(G)$ too. It implies $\gamma(G)=t \gamma\left(P_{n_{i}}\right)$.
The domination number of vertex amalgamation of some ladders is presented in the following theorem.
Theorem 4. If $G=\bigvee_{\{v\}}^{1}\left\{L_{n_{1}}, L_{n_{2}}, \ldots, L_{n_{t}}\right\}$ for ladder graph L_{n} then

$$
\gamma(G)=\left\{\begin{array}{l}
\sum_{i=1}^{t}\left\lceil\frac{n_{i}+1}{2}\right\rceil-t+1, \text { if } v \text { belongs to every } \gamma\left(L_{n_{i}}\right)-\text { set } \\
\sum_{i=1}^{t}\left\lceil\frac{n_{i}+1}{2}\right\rceil \quad, \text { if } v \text { has not belongs to any } \gamma\left(L_{n_{i}}\right)-\text { set }
\end{array} .\right.
$$

Before proving the dominating number of a vertex amalgamation of some graphs, we present a lemma concerning on the dominating number of the graph G obtained by joining all vertices of a graph H to a vertex K_{1}, that is, $G=K_{1}+H$.

Lemma 1. For every graph $G, \gamma(G)=1$ if and ony if $G=K_{1}+H$ for some graph H.
As the diameter of $G=K_{1}+H$ is one, it is very easy to see that any one vertex in G can dominate other vertices in G. We now have the following theorem.

Theorem 5. Let graph G_{i} which $\gamma\left(G_{i}\right)=1$ and $G=\bigvee_{\{v\}}^{1}\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}$.
a. If v belongs to every $\gamma\left(G_{i}\right)$-set then $\gamma(G)=1$.
b. If v has not belongs to any $\gamma\left(G_{i}\right)$-set then $\gamma(G)=t$.
c. If v has not belongs to any $\gamma\left(G_{i}\right)$-set for $1 \leq i \leq p$ and v belongs to every $\gamma\left(G_{i}\right)$-set for $p<$ $i \leq t$ then $\gamma(G)=p+1$.

Proof. From Lemma 1, we have $G_{i}=K_{1}+H_{i}$. Let $\left|V\left(H_{i}\right)\right|=n_{i}$ so $\left|V\left(G_{i}\right)\right|=n_{i}+1$ and $|V(G)|=$ $\sum_{i=1}^{t} n_{i}+1$. The degree of every vertex in $\gamma\left(G_{i}\right)-$ set is n_{i} and less than n_{i} for the others.
a. If v belongs to every $\gamma\left(G_{i}\right)$-set then v has $\sum_{i=1}^{t} n_{i}$ degree so $\{v\}$ is dominating set.
b. If v has not belong to every $\gamma\left(G_{i}\right)$-set then v adjacent with t vertices which degrees are $n_{1}, n_{2}, \ldots, n_{t}$ respectively. These t vertices span the dominating set of G. The cardinality of this dominating set is minimum, if there exist a set with t-1 cardinality then there exists G_{i} where the n_{i} vertices which less than n_{i} degree is not adjacent to these $t-1$ vertices.
c. We combine (b) condition for p first subgraphs G_{i} and (a) condition for the others then we have $\gamma(G)=p+1$.
The next lemma describes the dominating set of vertex amalgamation of some graphs.

Lemma 2. Let $G=\bigvee_{\{v\}}^{1}\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}$. If S_{i} is a dominating set of G_{i} for every $i=1,2, \ldots, t$, then $\bigcup_{i=1}^{t} S_{i}$ is a dominating set of G.

In the theorems below we notice S_{i} as a dominating set of G_{i}, then the set P_{i} is as $\gamma\left(G_{i}\right)$-set, and the set P is as $\gamma(G)$-set.
Theorem 6. Let $G=\mathrm{V}_{\{v\}}^{1}\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}$ and v belongs to every $\gamma\left(G_{i}\right)$-set, then $\gamma(G)=$ $\sum_{i=1}^{t} \gamma\left(G_{i}\right)-t+1$.
Proof. By Lemma 2, $\cup_{i=1}^{t} S_{i}$ is a dominating set of G such that $\gamma(G)=\gamma\left(\cup_{i=1}^{t} G_{i}\right) \leq\left|\cup_{i=1}^{t} S_{i}\right|$. If v belongs to every $\gamma\left(G_{i}\right)$-set then $v \in S_{i}$ for every i such that $\bigcap_{i=1}^{t} S_{i}=\{v\}$. It implies $\left|\cup_{i=1}^{t} S_{i}\right|=1+$ $\sum_{i=1}^{t}\left(\left|S_{i}\right|-1\right)=\sum_{i=1}^{t}\left|S_{i}\right|-t+1$. We have $\gamma(G)=\gamma\left(\cup_{i=1}^{t} G_{i}\right) \leq \sum_{i=1}^{t}\left|S_{i}\right|-t+1$. The least upper bound reached for $\left|S_{i}\right|=\gamma\left(G_{i}\right)$, so $\gamma(G) \leq \sum_{i=1}^{t} \gamma\left(G_{i}\right)-t+1$. Suppose there exists $P \subset V(G)$ which $P=\cup_{i=1}^{t} P_{i}$ for $P_{i} \subset V\left(G_{i}\right)$ such that $|P|=\sum_{i=1}^{t} \gamma\left(G_{i}\right)-t$. If $v \in P$ then there exists P_{i} such that $\left|P_{i}\right|=$ $\gamma\left(G_{i}\right)-1$. However, there exists $x \in V\left(G_{i}\right)-P_{i}$ such that for every $y \in P_{i}$ holds $x \times y$. Because $V\left(G_{i}\right) \subset V(G)$ it mean that there is $x \in V(G)-P$ such that for every $y \in P$ holds $x+y$. So, P have not a dominating set. If $v \notin P$ then $\left|P_{i}\right|=\gamma\left(G_{i}\right)-1$ for every i. It means that P_{i} is not a dominating set with minimum cardinality. So does P.

Theorem 7. If $G=\vee_{\{v\}}^{1}\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}$ and v has not belong to every $\gamma\left(G_{i}\right)$-set then $\gamma(G)=$ $\sum_{i=1}^{t} \gamma\left(G_{i}\right)$.
Proof. By Lemma 2, we have $\gamma(G)=\gamma\left(\mathrm{U}_{i=1}^{t} G_{i}\right) \leq\left|\mathrm{U}_{i=1}^{t} S_{i}\right|$. If there is no $\gamma\left(G_{i}\right)$-set consist of v then $v \notin S_{i}$ for every i such that $\bigcap_{i=1}^{t} S_{i}=\emptyset$. It implies $\gamma(G)=\gamma\left(\cup_{i=1}^{t} G_{i}\right) \leq\left|\cup_{i=1}^{t} S_{i}\right|=\sum_{i=1}^{t}\left|S_{i}\right|$. The least upper bound reached for $\left|S_{i}\right|=\gamma\left(G_{i}\right)$, so $\gamma(G) \leq \sum_{i=1}^{t} \gamma\left(G_{i}\right)$. Suppose there is vertices subset $P=\cup_{i=1}^{t} P_{i}$ which $|P|=\sum_{i=1}^{t} \gamma\left(G_{i}\right)-1$. There exist P_{i} such that $\left|P_{i}\right|=\gamma\left(G_{i}\right)-1$ for every i. It means that P_{i} is not dominating set with minimum cardinality. So do P.

Corollary 8. Let $G=\mathrm{V}_{\{v\}}^{1}\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}$. If v belongs to every $\gamma\left(G_{i}\right)$-set for $1 \leq i \leq p$ and v has not belongs to any $\gamma\left(G_{i}\right)$-set for $p+1 \leq i \leq t$, then $\gamma(G)=\sum_{i=1}^{t} \gamma\left(G_{i}\right)-p+1$.

3. Conclusion

We conclude this paper with the domination number of vertex amalgamation of some graphs at a vertex v is like the order of these graphs especially if v belongs to every $\gamma\left(G_{i}\right)$-set, that is $\gamma\left(\mathrm{V}_{\{v\}}^{1}\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}\right)=\sum_{i=1}^{t} \gamma\left(G_{i}\right)-t+1$. The following open problems for future work.
Open problem. Find the distance domination number of particular classes of graphs and the graphs obtained from graph operations.

Acknowledgement

This research is supported by Direktorat Riset dan Pengabdian Masyarakat, Ditjen Penguatan Risbang, Kemenristekdikti.

References

[1] Chartrand G and Lesniak L 1996 Graphs \& Digraphs third edition (Florida Chapman \& Hall/CRC)

Digital Repository Universitas Jember

International Conference on Mathematics: Education, Theory and Application IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 855 (2017) 012059 doi:10.1088/1742-6596/855/1/012059
[2] Go C E and Canoy Jr S R 2011 Domination in the corona and join of graphs International Mathematical Forum 6 no 16 763-71
[3] Haynes T W, Hedetniemi S T and Slater P J 1998 Fundamentals of Domination in Graphs (New York Marcel Dekker Inc)
[4] Klobucar A 1999 Domination Numbers of Cardinal Product Mathematica Slovaca 49 no 4 387402
[5] Kuziak D Lemanska M and Yero I G 2014 Domination related parameters in rooted product graphs arXiv: 1204.0644v2
[6] Pavlic P and Zerovnik J 2013 A note on the domination number of the Cartesian products of paths and cycles Kragujevac Journal of Mathematics 37(2) 275-85
[7] Snyder K 2011 c-Dominating Sets for Families of Graphs
[8] Wardani DAR et al 2014 Domination Number of Special Graphs Proceedings of Seminar of Mathematics and Mathematics Education 1 no 1 78-82
[9] Yang Y and Kong X 2012 The thickness of amalgamations of graphs arXiv: 1201.6483v1

