Diregularity of digraphs of out-degree three and order two less than Moore bound

Slamin1, Edy T. Baskoro2, Mirka Miller1

1 Department of Computer Science and Software Engineering
The University of Newcastle, NSW 2308, Australia
{slamin,mirka}@cs.newcastle.edu.au
2 Department of Mathematics
Institut Teknologi Bandung, Indonesia
ebaskoro@bdg.centrin.net.id

Abstract. It is easy to show that any digraph with out-degree at most $d \geq 2$, diameter $k \geq 2$ and order $n = d + d^2 + \ldots + d^k - 1$, that is, two less than Moore bound must have all vertices of out-degree d. In other words, the out-degree of the digraph is constant ($= d$). However, establishing the diregularity or otherwise of the in-degree of such a digraph is not easy. It was proved that every digraph of out-degree at most two, diameter $k \geq 3$ and order two less than the Moore bound is diregular [8]. In this paper, we consider the diregularity of digraphs of out-degree at most three, diameter $k \geq 3$ and order two less than the Moore bound.

1 Introduction and preliminaries

A directed graph or digraph G is a pair of sets (V, A) where V is a finite nonempty set of distinct elements called vertices, and A is a set of ordered pairs (u, v) of distinct vertices $u, v \in V$ called arcs.

The order n of a digraph G is the number of vertices in G, that is, $n = |V|$. An in-neighbour (respectively out-neighbour) of a vertex v in G is a vertex u (respectively w) such that $(u, v) \in A$ (respectively $(v, w) \in A$). The set of all in-neighbours (respectively out-neighbours) of a vertex v is denoted by $N^{-}(v)$ (respectively $N^{+}(v)$). The in-degree (respectively out-degree) of a vertex v is the number of its in-neighbours (respectively out-neighbours). We denote by $d^{-}(v)$ the in-degree of v in G. If the in-degree equals the out-degree ($=d$, say) for every vertex in G, then G is called a diregular digraph of degree d.

A $v_0 - v_l$ walk of length l in a digraph G is an alternating sequence $v_0a_1v_1a_2\ldots a_lv_l$ of vertices and arcs in G such that $a_i = (v_{i-1}, v_i)$ for each i, $1 \leq i \leq l$. A walk is closed if $v_0 = v_l$. If all the vertices of a $v_0 - v_l$ walk are distinct, then such a walk is called a path. A cycle is a closed walk with all vertices and edges are distinct (except the first and the last vertices).

The distance from vertex u to v, denoted by $\delta(u, v)$, is the length of the shortest path from vertex u to vertex v. Note that in general $\delta(u, v)$ is not necessarily