On two conjectures concerning vertex-magic total labelings of generalized Petersen graphs

SLAMIN and Mirka MILLER
Department of Computer Science and Software Engineering,
The University of Newcastle, NSW 2308 Australia
e-mail: {slamin,mirka}@cs.newcastle.edu.au

Abstract

A vertex-magic total labeling of a graph with \(v \) vertices and \(e \) edges is defined as a one-to-one map taking the vertices and edges onto the integers \(1, 2, \ldots, v+e \) with the property that the sum of the labels on a vertex and the labels on its incident edges is a constant, independent of the choice of vertex.

In this paper we give a vertex-magic total labeling for the prism \(D_n \) for all \(n \geq 3 \); and a vertex-magic total labeling for the generalized Petersen graphs \(P(n, m) \) for \(n \geq 3 \), \(1 \leq m \leq \lfloor \frac{2n-1}{3} \rfloor \), and \(n \) and \(m \) coprime.

1 Introduction

A vertex-magic total labeling of a graph \(G = (V, E) \) with \(v \) vertices and \(e \) edges is an assignment of the integers from 1 to \(v+e \) to the vertices and edges of \(G \) with the property that the sum of the label on a vertex and the labels on its incident edges is a constant, independent of the choice of vertex. More formally, a one-to-one map \(\lambda \) from \(E \cup V \) onto the integers \(\{1, 2, \ldots, e+v\} \) is a vertex-magic total labeling if there is a constant \(k \) so that for every vertex \(x \),

\[
\lambda(x) + \sum \lambda(xy) = k
\]

(1)

where the sum is over all vertices \(y \) adjacent to \(x \). The constant \(k \) is called the magic constant for \(\lambda \). This notion was introduced in [5]. We note that not every graph has a vertex-magic total labeling. For the graph \(K_2 \), since \(\lambda(x) \neq \lambda(y) \), then \(\lambda(x) + \lambda(xy) \neq \lambda(y) + \lambda(xy) \), and so no vertex-magic total labeling is possible. Another example is \(K_{m,n} \), for \(n > m + 1 \), see [5].