VERTEX-ANTIMAGIC TOTAL LABELINGS OF GRAPHS

Martin Bača
Department of Applied Mathematics
Technical University, 04200 Košice, Slovak Republic
e-mail: Martin.Baca@tuke.sk
François Bertault
Department of Computer Science and Software Engineering
University of Newcastle, NSW 2308, Australia
e-mail: francois@cs.newcastle.edu.au
James A. MacDougall
Department of Mathematics
University of Newcastle, NSW 2308, Australia
e-mail: jmacd@math.newcastle.edu.au
Mirka Miller, Rinovia Simanjuntak and Slamin
Department of Computer Science and Software Engineering University of Newcastle, NSW 2308, Australia
e-mail: \{mirka,rino,slamin\}@cs.newcastle.edu.au

Abstract

In this paper we introduce a new type of graph labeling for a graph $G(V, E)$ called an (a, d)-vertex-antimagic total labeling. In this labeling we assign to the vertices and edges the consecutive integers from 1 to $|V|+|E|$ and calculate the sum of labels at each vertex, i.e., the vertex label added to the labels on its incident edges. These sums form an arithmetical progression with initial term a and common difference d.

We investigate basic properties of these labelings, show their relationships with several other previously studied graph labelings, and

