

Available online at www.sciencedirect.com

Discrete Mathematics 306 (2006) 539-551

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

On the degrees of a strongly vertex-magic graph

C. Balbuena^a, E. Barker^b, K.C. Das^b, Y. Lin^c, M. Miller^b, J. Ryan^b, Slamin^b, K. Sugeng^b, M. Tkac^d

^aDepartament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya, Campus Nord, C/ Jordi Girona 1 i 3, Edifici C2, 08034 Barcelona, Spain

^bSchool of Electrical Engineering and Computer Science, The University of Newcastle, NSW 2308, Australia ^cSchool of Information Technology and Mathematical Sciences, University of Ballarat, VIC 3353, Australia ^dDepartment of Economics Informatics and Mathematics, University of Economics, Bratislava

Received 3 February 2005; received in revised form 10 December 2005; accepted 25 January 2006

Abstract

Let G = (V, E) be a finite graph, where $|V| = n \ge 2$ and $|E| = e \ge 1$. A vertex-magic total labeling is a bijection λ from $V \cup E$ to the set of consecutive integers $\{1, 2, ..., n + e\}$ with the property that for every $v \in V$, $\lambda(v) + \sum_{w \in N(v)} \lambda(vw) = h$ for some constant h. Such a labeling is strong if $\lambda(V) = \{1, 2, ..., n\}$. In this paper, we prove first that the minimum degree of a strongly vertex-magic graph is at least two. Next, we show that if $2e \ge \sqrt{10n^2 - 6n + 1}$, then the minimum degree of a strongly vertex-magic graph is at least three. Further, we obtain upper and lower bounds of any vertex degree in terms of n and e. As a consequence we show that a strongly vertex-magic graph is maximally edge-connected and hamiltonian if the number of edges is large enough. Finally, we prove that semi-regular bipartite graphs are not strongly vertex-magic graphs, and we provide strongly vertex-magic total labeling of certain families of circulant graphs.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Graph; Labeling; Supervertex-magic; Degree

1. Introduction

All graphs considered in this paper are finite, simple and undirected. The graph G has vertex set V = V(G) and edge set E = E(G) and we let n = |V| and e = |E|. Throughout the paper we will assume that $e \ge 1$. The degree of a vertex v is the number of edges that have v as an endpoint and the set of neighbors of v is denoted by N(v).

A one-to-one map $\lambda : V \cup E \rightarrow \{1, 2, ..., n + e\}$ is a *vertex-magic total labeling* of *G* if there is a constant *h* so that for every vertex *x*

$$w_{\lambda}(x) = \lambda(x) + \sum_{y \in N(x)} \lambda(xy) = h.$$

E-mail addresses: m.camino.balbuena@upc.edu (C. Balbuena), e.barker@ballarat.edu.au (E. Barker), kinkar@mailcity.com (K.C. Das), yqlin@cs.newcastle.edu.au (Y. Lin), m.miller@ballarat.edu.au (M. Miller), joe.ryan@ballarat.edu.au (J. Ryan), slamin@unej.ac.id (Slamin), k.sugeng@ballarat.edu.au (K. Sugeng), mtkac@euke.sk (M. Tkac).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter @ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2006.01.019