On the degrees of a strongly vertex-magic graph

C. Balbuena ${ }^{\text {a }}$, E. Barker ${ }^{\text {b }}$, K.C. Das ${ }^{\text {b }}$, Y. Lin ${ }^{\text {c }}$, M. Miller ${ }^{\text {b }}$, J. Ryan ${ }^{\text {b }}$, Slamin ${ }^{\text {b }}$, K. Sugeng ${ }^{\text {b }}$, M. Tkac ${ }^{\text {d }}$
${ }^{\text {a }}$ Departament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya, Campus Nord, C/ Jordi Girona 1 i 3, Edifici C2, 08034 Barcelona, Spain
${ }^{\mathrm{b}}$ School of Electrical Engineering and Computer Science, The University of Newcastle, NSW 2308, Australia
${ }^{\mathrm{c}}$ School of Information Technology and Mathematical Sciences, University of Ballarat, VIC 3353, Australia
${ }^{\mathrm{d}}$ Department of Economics Informatics and Mathematics, University of Economics, Bratislava

Received 3 February 2005; received in revised form 10 December 2005; accepted 25 January 2006

Abstract

Let $G=(V, E)$ be a finite graph, where $|V|=n \geqslant 2$ and $|E|=e \geqslant 1$. A vertex-magic total labeling is a bijection λ from $V \cup E$ to the set of consecutive integers $\{1,2, \ldots, n+e\}$ with the property that for every $v \in V, \lambda(v)+\sum_{w \in N(v)} \lambda(v w)=h$ for some constant h. Such a labeling is strong if $\lambda(V)=\{1,2, \ldots, n\}$. In this paper, we prove first that the minimum degree of a strongly vertex-magic graph is at least two. Next, we show that if $2 e \geqslant \sqrt{10 n^{2}-6 n+1}$, then the minimum degree of a strongly vertex-magic graph is at least three. Further, we obtain upper and lower bounds of any vertex degree in terms of n and e. As a consequence we show that a strongly vertex-magic graph is maximally edge-connected and hamiltonian if the number of edges is large enough. Finally, we prove that semi-regular bipartite graphs are not strongly vertex-magic graphs, and we provide strongly vertex-magic total labeling of certain families of circulant graphs.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Graph; Labeling; Supervertex-magic; Degree

1. Introduction

All graphs considered in this paper are finite, simple and undirected. The graph G has vertex set $V=V(G)$ and edge set $E=E(G)$ and we let $n=|V|$ and $e=|E|$. Throughout the paper we will assume that $e \geqslant 1$. The degree of a vertex v is the number of edges that have v as an endpoint and the set of neighbors of v is denoted by $N(v)$.

A one-to-one map $\lambda: V \cup E \rightarrow\{1,2, \ldots, n+e\}$ is a vertex-magic total labeling of G if there is a constant h so that for every vertex x

$$
w_{\lambda}(x)=\lambda(x)+\sum_{y \in N(x)} \lambda(x y)=h
$$

[^0]
[^0]: E-mail addresses: m.camino.balbuena@upc.edu (C. Balbuena), e.barker@ballarat.edu.au (E. Barker), kinkar@mailcity.com (K.C. Das), yqlin@cs.newcastle.edu.au (Y. Lin), m.miller@ballarat.edu.au (M. Miller), joe.ryan@ballarat.edu.au (J. Ryan), slamin@unej.ac.id (Slamin), k.sugeng@ballarat.edu.au (K. Sugeng), mtkac@euke.sk (M. Tkac).

