Total Vertex Irregular Labeling of Complete Bipartite Graphs

Kristiana Wijaya1, Slamint2, Surahmat3, and Stanislav Jendrol4

1 Department of Mathematics, Universitas Jember, Jalan Kalimantan Jember, Indonesia, kristiana.wijaya@yahoo.com
2 Department of Mathematics Education, Universitas Jember, Jalan Kalimantan Jember, Indonesia, slamintunej.ac.id
3 Department of Mathematics Education, Universitas Islam Malang, Jalan M.T. Haryono 193 Malang, Indonesia, caksurahmat@yahoo.com
4 Institute of Mathematics, P.J. Šafárik University, Jesenná 5 041 54 Košice, Slovak Republic, jendrol@kosice.upjs.sk

Abstract. A total vertex irregular labeling of a graph G with v vertices and e edges is an assignment of integer labels to both vertices and edges so that the weights calculated at vertices are distinct. The total vertex irregularity strength of G, denoted by $tus(G)$, is the minimum value of the largest label over all such irregular assignments. In this paper, we consider the total vertex irregular labeling of complete bipartite graphs $K_{m,n}$ and prove that

$$tus(K_{m,n}) \geq \max\left\{ \left\lfloor \frac{m+n}{m+1} \right\rfloor, \left\lceil \frac{2m+n-1}{n} \right\rceil \right\} \text{ if } (m,n) \neq (2,2).$$

1 Introduction

In this paper all graph are finite, simple, undirected, and connected. The graph G has v vertices and e edges. A total vertex irregular labeling on a graph G with v vertices and e edges is an assignment of integer labels to both vertices and edges so that the weights calculated at vertices are distinct. The weight of a vertex v in G is defined as the sum of the label of v and the labels of all the edges incident with v, that is,

$$wt(v) = \lambda(v) + \sum_{uv \in E} \lambda(uv)$$

The notion of a total vertex irregular labeling was introduced by Bača, et al.[1]. The total vertex irregularity strength of G, denoted by $tus(G)$, is the minimum value of the largest label over all such irregular assignments.

JCMCC 55 (2005), pp. 129-136