

PEMBUATAN KOAGULAN TAHU DARI AIR LAUT YANG DIPEKATKAN MELALUI PEMANASAN PADA BEBERAPA TINGKAT KONSENTRASI

SKRIPSI

Oleh

Eva Majidah Nugrahani 101810301001

JURUSAN KIMIA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS JEMBER
2014

PEMBUATAN KOAGULAN TAHU DARI AIR LAUT YANG DIPEKATKAN MELALUI PEMANASAN PADA BEBERAPA TINGKAT KONSENTRASI

SKRIPSI

diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program Studi Kimia (S1) dan mencapai gelar Sarjana Sains

Oleh

Eva Majidah Nugrahani NIM 101810301001

JURUSAN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER

2014

PERSEMBAHAN

Skripsi ini saya persembahkan untuk:

- 1. Ibunda Cicik Endah Adriana dan Ayahanda M. Usman tercinta, terimakasih atas doa, motivasi, perhatian, dan kasih sayang yang tiada henti tercurahkan;
- 2. adikku tercinta M. Zainuddin Ustmani atas semangat dan doanya selama ini;
- 3. Slamet Sunaryo atas bantuan, semangat dan perhatian yang diberikan;
- 4. guru-guru di TK Aisyiah, SDN Socah 02, SMPN 5 Bangkalan, SMAN 1 Bangkalan, serta dosen-dosen di Jurusan Kimia FMIPA UNEJ;
- 5. Almamater tercinta Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember.

MOTTO

"Sesungguhnya Allah tidak akan mengubah nasib suatu kaum kecuali kaum itu sendiri yang mengubah apa-apa yang pada diri mereka" (QS.Ar-R'ad:11) *)

"Singsingkan lengan baju dan bersungguh-sungguhlah menggapai impian karena kemuliaan tidak akan bisa diraih dengan kemalasan." **)

^{*)} Anonim. 2006. Al-Quran dan Terjemahnya. Penerjemah Yayasan Penerjemah Al-Quran. Bandung: Diponegoro.

^{**)} Fuadi, A. 2011. Ranah 3 Warna. Jakarta : PT. Gramedia Pustaka Utama.

PERNYATAAN

Saya yang bertanda tangan di bawah ini:

Nama: Eva Majidah Nugrahani

NIM : 101810301001

menyatakan dengan sesungguhnya bahwa karya ilmiah yang berjudul "Pembuatan Koagulan Tahu dari Air Laut yang Dipekatkan Melalui Pemanasan pada Beberapa Tingkat Konsentrasi" adalah benar-benar hasil karya sendiri, kecuali kutipan yang sudah saya sebutkan sumbernya, belum pernah diajukan pada institusi mana pun, dan bukan karya jiplakan. Saya bertanggung jawab atas keabsahan dan kebenaran isinya sesuai dengan sikap ilmiah yang harus dijunjung tinggi.

Demikian pernyataan ini saya buat dengan sebenarnya, tanpa ada tekanan dan paksaan dari pihak mana pun serta bersedia mendapat sanksi akademik jika ternyata di kemudian hari pernyataan ini tidak benar.

Jember, 24 Desember 2014 Yang menyatakan,

Eva majidah Nugrahani NIM. 101810301001

iv

SKRIPSI

PEMBUATAN KOAGULAN TAHU DARI AIR LAUT YANG DIPEKATKAN MELALUI PEMANASAN PADA BEBERAPA TINGKAT KONSENTRASI

Oleh Eva Majidah Nugrahani NIM 101810301001

Pembimbing

Dosen Pembimbing Utama : Asnawati S.Si., M.Si

Dosen Pembimbing Anggota: Agung Budi Santoso S.Si., M.Si

PENGESAHAN

Skripsi berjudul "Pembuatan Koagulan Tahu dari Air Laut yang Dipekatkan Melalui Pemanasan pada Beberapa Tingkat Konsentrasi" telah diuji dan disahkan oleh Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember pada:

hari, tanggal : SELASA 13 JAN 2015

: Fakultas Matematika dan Ilmu Pengetahuan Alam. tempat

Tim Penguji;

Asnawati S.Si., M.Si.

Ketua (DPU).

NTP. 196808141999032001

Drs. Siswoyo M.Sc., Ph.D

NIP. 196605291993031003

Sekretaris (DPA),

Agung Budi Santoso S.Si., M.Si.

NIP. 197104301998031003

Penguji II

drh. Wuryanti Handayani M.Si.

NIP. 196008221985032002

Mengesahkan

Dekan Fakultas Matematika dan Ilmu Pengetahuan Alam

Universitas Jember

Prof. Drs. Kysno, DEA., Ph.D

RINGKASAN

Pembuatan Koagulan Tahu dari Air Laut yang Dipekatkan Melalui Pemanasan pada Beberapa Tingkat Konsentrasi; Eva Majidah Nugrahani, 101810301001; 2014: 44 halaman; Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember.

Indonesia merupakan negara kepulauan dengan wilayah laut yang luas. Air laut banyak mengandung mineral terlarut dan dimanfaatkan oleh banyak orang untuk pembuatan garam. Rendahnya kualitas garam disebabkan karena masih banyak pengotor seperti Mg²⁺, Ca²⁺, dan garam-garam lainnya selain NaCl. Beberapa cara seperti koagulasi maupun elektrolisis dapat dilakukan untuk menghilangkan pengotor tersebut. Mineral-mineral pengotor yang dipisahkan dapat disebut sebagai sari air laut (nigari) yang dapat diolah menjadi bahan tambahan makanan dengan nilai jual tinggi.

Nigari (sari air laut) merupakan mineral air laut yang bisa diperoleh dengan cara pemekatan air laut. Penggunaan sari air laut di Indonesia masih jarang digunakan. Di Jepang, penggunaan sari air laut ini sudah diaplikasikan sebagai pengawet ikan maupun sebagai koagulan dalam pembuatan tahu. Pembuatan sari air laut dapat dilakukan dengan banyak metode seperti dialisis *ion exchange*, maupun PSS (*Preferential Salt Separation*). Penggunaan metode ini untuk skala laboratorium cukup mahal dan lahan produksi yang dibutuhkan juga cukup luas. Pembuatan sari air laut yang telah dilakukan dan beredar dipasaran sebagai suplemen dibuat dengan memanfaatkan sisa air laut dari proses pembuatan garam. Penggunaan metode ini juga memiliki kelemahan yakni bergantung pada cuaca. Maka dari itu dilakukan pembuatan sari air laut dengan metode pemanasan sederhana untuk dijadikan sebagai koagulan alternatif dalam pembuatan tahu.

Pembuatan sari air laut sebagai koagulan di Indonesia masih jarang digunakan. Hal ini disebabkan karena produsen tahu biasanya menggunakan *whey* atau asam cuka sehingga limbah yang dihasilkan mencemari lingkungan karena sifatnya yang asam. Ini berbeda dengan penggunaan koagulan sari air laut yang dapat menghasilkan

limbah yang bersifat netral. Penggunaan sari air laut sebagai koagulan juga dapat memberikan tambahan mineral untuk asupan gizi dalam tubuh.

Pembuatan sari air laut dilakukan dengan variasi pemekatan yakni 10; 12,5; 25 dan 50 kali. Hasil pemekatan diuji konsentrasi mineralnya menggunakan AAS. Mineral yang diuji berupa mineral terbesar dalam air laut yaitu Mg²⁺, Ca²⁺, Na⁺, dan K⁺. Hasil analisis menunjukkan bahwa ketiga mineral yakni Mg²⁺, Na⁺, dan K⁺ meningkat seiring dengan meningkatnya pemekatan yang dilakukan. Peningkatan konsentrasi diakibatkan karena berkurangnya volume pelarut dalam larutan dan masih banyaknya mineral tersebut yang belum terendapkan sebagai garam. Hal ini berbeda dengan mineral Ca²⁺ yang semakin turun konsentrasinya seiring dengan besarnya pemekatan. Selain konsentrasi berkurang, jumlah mol dalam larutan juga berkurang karena telah banyak terbentuk endapan garam Ca²⁺ yang memiliki nilai Ksp rendah.

Nilai konsentrasi mineral paling tinggi yakni pemekatan 50 kali ditambahkan dengan natrium karbonat. Mineral yang terendapkan dengan penambahan natrium karbonat dilarutkan kembali dengan aquademin dan penambahan asam fosfat. Sari air laut yang diperoleh dibandingkan dengan hasil pemekatan tanpa penambahan natrium karbonat yaitu konsentrasi, tekstur dan efisiensi pemakaiannya sebagai koagulan dalam pembuatan tahu.

Sari air laut yang telah diperoleh, diujikan terhadap 500 mL susu kedelai yang telah dididihkan. Tekstur yang diperoleh paling bagus didapatkan pada pemekatan 50 kali tanpa penambahan natrium karbonat, namun rasa yang dihasilkan asin. Semakin banyak penambahan natrium karbonat dalam sari air laut, efisiensi pemakaiannya semakin sedikit sebagai koagulan. Hal ini disebabkan karena semakin banyak mineral yang terendapkan. Terbentuknya tahu serta tekstur yang tidak rapuh disebakan karena adanya proses *salting out* saat penambahan larutan garam. Garam akan menarik molekul air yang berfungsi sebagai pelarut pada protein sehingga protein yang memiliki berat molekul besar akan mengendap akibat adanya gaya gravitasi.

Hasil analisis menunjukkan bahwa penggunaan sari air laut sebagai koagulan dalam pembuatan tahu paling baik terjadi pemekatan yang tinggi yakni 50 kali

dengan nilai konsentrasi mineral tertinggi Mg²⁺ (1,55 M); Ca²⁺ (0,01 M); Na⁺ (4,06 M); dan K⁺ (0,17 M) serta memiliki tekstur yang lebih padat namun sari air laut dengan penambahan natrium karbonat memiliki rasa yang lebih baik. Semakin banyak penambahan natrium karbonat semakin banyak pula mineral yang diperoleh sehingga efisiensi pemakaiannya sebagai koagulan semakin baik.

PRAKATA

Puji syukur ke hadirat Allah SWT. Atas segala rahmat dan karunia-Nya sehingga penulis dapat menyelesaikan skripsi yang berjudul "Pembuatan Koagulan Tahu dari Air Laut yang Dipekatkan Melalui Pemanasan pada Beberapa Tingkat Konsentrasi". Skripsi ini disusun untuk memenuhi salah satu syarat menyelesaikan pendidikan strata satu (S1) pada Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember.

Penyusunan skripsi ini tidak lepas dari bantuan berbagai pihak. Oleh karena itu, penulis menyampaikan terima kasih kepada:

- 1. Prof. Drs. Kusno, DEA., Ph.D, selaku Dekan Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember;
- 2. Dr. Bambang Piluharto, S.Si., M.Si, selaku ketua Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember;
- 3. Asnawati S.Si., M.Si, selaku Dosen Pembimbing Utama, dan Agung Budi Santoso S.Si., M.Si, selaku Dosen Pembimbing Anggota yang telah meluangkan waktu, tenaga, pikiran dan perhatian dalam penulisan skripsi ini;
- 4. Drs. Siswoyo M.Sc., Ph.D selaku Dosen Penguji I dan drh. Wuryanti Handayani M.Si selaku Dosen Penguji II yang telah meluangkan waktunya guna menguji, serta memberikan kritik dan saran demi kesempurnaan skripsi ini;
- 5. Ir. Neran M. Kes selaku Dosen Pembimbing Akademik yang telah membimbing penulis selama menjadi mahasiswa;
- 6. Yeni Maulidah Muflihah S.Si., M.Si selaku ketua laboratorium kimia analitik;
- bapak dan ibu dosen, seluruh staf administrasi dan teknisi laboratorium FMIPA UNEJ, khususnya Jurusan Kimia yang telah banyak memberikan bantuan dan semua ilmunya;
- 8. teman-teman seperjuangan angkatan 2010 "RUMPIS", terima kasih atas semangat, bantuan, saran, perhatian, dan kenangan yang telah diberikan;
- 9. semua pihak yang tidak dapat disebutkan satu persatu.

Penulis juga menerima segala kritik dan saran dari semua pihak demi kesempurnaan skripsi ini. Akhirnya penulis berharap, semoga skripsi ini dapat bermanfaat bagi ilmu pengetahuan.

Jember, 24 Desember 2014

Penulis

DAFTAR ISI

Halaman

HALAMAN JUDULi
HALAMAN PERSEMBAHANii
HALAMAN MOTOiii
HALAMAN PERNYATAANiv
HALAMAN PENGESAHANvi
RINGKASANvii
PRAKATAx
DAFTAR ISIxii
DAFTAR TABELxiv
DAFTAR GAMBARxv
DAFTAR LAMPIRANxvi
BAB 1. PENDAHULUAN
1.1 Latar Belakang 1
1.2 Rumusan Masalah4
1.3 Batasan Masalah
1.4 Tujuan4
1.5 Manfaat 5
BAB 2. TINJAUAN PUSTAKA6
2.1 Air Laut6
2.2 Hasil Kali Kelarutan8
2.3 Proses Pembuatan Garam10
2.4 Magnesium12
2.5 Sari Air Laut
2.6 Tahu
2.7 Koagulan16

2.7 Spektrofotometri Serapan Atom (SSA)	18
BAB 3. METODE PENELITIAN	20
3.1 Waktu dan Tempat Penelitian	20
3.2 Alat dan Bahan	20
3.2.1 Alat	20
3.2.2 Bahan	20
3.3 Rancangan Penelitian	21
3.4 Prosedur Penelitian	22
3.4.1 Pembuatan Sari Air Laut	22
3.4.2 Pengukuran Larutan Sari Air Laut	22
3.4.3 Penmbuatan Larutan Standar	23
3.4.4 Penmbuatan Kurva Kalibrasi	23
3.4.5 Penmbuatan Tahu	24
BAB 4. HASIL DAN PEMBAHASAN	25
4.1 Sampling	25
4.2 Pengukuran Konsentrasi Mineral Air Laut	27
4.3 Pemekatan Mineral Air Laut	28
4.4 Pembuatan Tahu	35
4.5 Penambahan Natrium Karbonat pada Mineral Air Laut	
	36
BAB 5. PENUTUP	41
5.1 Kesimpulan	41
5.2 Saran	41
DAFTAR PUSTAKA	42
I AMPIRAN	45

DAFTAR TABEL

	Halaman
2.1 Komposisi Air Laut	6
2.2 Ksp Senyawa Ionik Suhu 25°C	9
2.3 Kandungan Nigari	15
4.1 Pengukuran Konsentrasi Mineral Air Laut	28
4.2 Konsentrasi Mineral Setelah Penambahan Natrium Karbonat	37

DAFTAR GAMBAR

	Halaman
2.1 Proses pemanenan garam; pengaisan dan penirisan garam	12
2.2 Kristal Magnesium	13
2.3 Komponen Utama Spektrofotometer Serapan Atom	18
4.1 Lokasi Pengambilan Sampel	26
4.2 Perlakuan sampel	26
4.3 Perbandingan Konsentrasi Air Laut	27
4.4 Grafik Kenaikan dan Penurunan Konsentrasi Mineral Air Laut	29
4.5 Grafik Perbedaan Data Perhitungan dan Pengukuran Na ⁺	30
4.6 Grafik Perbedaan Data Perhitungan dan Pengukuran K ⁺	31
4.7 Grafik Perbedaan Data Perhitungan dan Pengukuran Mg ²⁺	32
4.8 Grafik Perbedaan Data Perhitungan dan Pengukuran Ca ²⁺	33
4.9 Tekstur Tahu Dengan Variasi Pemekatan	35
4.10 Pengukuran pH Sari Air Laut dengan Penambahan Natrium Karbonat	38
4.11 Tekstur tahu dengan variasi volume penambahan natrium karbonat	38
4.12 Efisiensi Pemakaian Koagulan Larutan Sari Air Laut	39

DAFTAR LAMPIRAN

Halaman

LAMPIRAN A	45
A.1 Kalibrasi Larutan Standar	45
A.2 Perhitungan Konsentrasi Air Laut Sebagai Kontrol	47
LAMPIRAN B	48
B.1 Analisis Absorbansi Air laut Setelah Pemekatan	48
LAMPIRAN C	51
C.1 Massa Setelah Penambahan Natrium Karbonat	51
C.2 Analisis Absorbansi Air laut pada Pemekatan 50 kali Setelah Penan	nbahan
Natrium Karbonat dan H ₃ PO ₄	51
C.3 Pengukuran pH	54
C.4 Nilai Ksp Ion-ion	54
LAMPIRAN D	58
D.1 Pembuatan Na ₂ CO ₃ 1 M	58
D.2 Pembuatan H ₃ PO ₄ 0,5 M	58