


Super Antimagicness of a Well-defined Graph
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Abstract: A graph G of order p and size q is called an (a, d)-edge-
antimagic total if there exist a bijection f : V (G)∪E(G) → {1, 2, . . . , p+
q} such that the edge-weights, w(uv) = f(u) + f(v) + f(uv), uv ∈ E(G),
form an arithmetic sequence with first term a and common difference
d. Such a graph G is called super if the smallest possible labels appear
on the vertices. In this paper we study super (a, d)-edge-antimagic to-
tal properties of connected and disconnected of a well-defined mountain
graph and also show a new concept of a permutation of an arithmetic
sequence.

Key Words : SEATL, Permutation, Arithmetic Sequence, Mountain
Graph.

Introduction

The labeling of graph is the one of graph theory branch which is widely
studied by a research group in combinatoric. Graph labelings provide use-
ful mathematical models for a wide range of applications, such as radar and
communication network addressing systems and circuit design, bioinformat-
ics, various coding theory problems, automata, x-ray crystallography and data
security. More detailed discussions about applications of graph labelings can
be found in Bloom and Golomb’s papers [4] and [5].

An (a, d)-edge-antimagic total labeling on a graph G is a bijective function
f : V (G) ∪ E(G) → {1, 2, . . . , p + q} with the property that the edge-weights
w(uv) = f(u) + f(uv) + f(v), uv ∈ E(G), form an arithmetic progression
{a, a + d, a + 2d, . . . , a + (q − 1)d}, where a > 0 and d ≥ 0 are two fixed
integers. If such a labeling exists then G is said to be an (a, d)-edge-antimagic
total graph. Such a graph G is called super if the smallest possible labels
appear on the vertices. Thus, a super (a, d)-edge-antimagic total graph is a
graph that admits a super (a, d)-edge-antimagic total labeling.

The concept of (a, d)-edge-antimagic total labeling, introduced by Siman-
juntak at al. in [11], is natural extension of the notion of edge-magic labeling
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defined by Kotzig and Rosa [9] (see also [1], [7], [10] and [14]). The super
(a, d)-edge-antimagic total labeling is natural extension of the notion of super
edge-magic labeling which was defined by Enomoto et al. in [6].

In this paper we investigate the existence of super (a, d)-edge-antimagic to-
tal labelings for connected and disconnected graphs. We will now concentrate
on a well-defined graph, namely the connected mountain graph and disjoint
union of m copies mountain graph, denoted by M2n and mM2n. This research
also show a new concept of a permutation of a consecutive number which is
very useful especially for finding a super (a, 1)-edge-antimagic total labeling.

Some Useful Lemmas

We start this section by a necessary condition for a graph to be super
(a, d)-edge-antimagic total, providing a least upper bound for feasible values
of d.

Lemma 1 If a (p, q)-graph is super (a, d)-edge-antimagic total then d ≤ 2p+q−5
q−1 .

Proof. Assume that a (p, q)-graph has a super (a, d)-edge-antimagic total
labeling f : V (G)∪E(G) → {1, 2, . . . , p+q}. The edge-weights w(uv) = f(u)+
f(v), form an arithmetic progression {a, a + d, a + 2d, . . . , a + (q − 1)d}. The
minimum possible edge weight in the labeling f is at least 1+2+p+1 = p+4.
Thus, a ≥ p + 4. On the other hand, the maximum possible edge weight is at
most (p− 1) + p + (p + q) = 3p + q− 1. Hence a + (q− 1)d ≤ 3p + q− 1. From
the last inequality, we obtain the desired upper bound for the difference d. 2

The following lemma, proved by Figueroa-Centeno et al. in [7], gives a
necessary and sufficient condition for a graph to be super (a, 0)-edge-antimagic
total or super edge-magic total.

Lemma 2 [13] A (p, q)-graph G is super edge-magic if and only if there exists
a bijective function f : V (G) → {1, 2, . . . , p} such that the set S = {f(u) +
f(v) : uv ∈ E(G)} consists of q consecutive integers. In such a case, f extends
to a super edge-magic labeling of G with magic constant a = p + q + s, where
s = min(S) and S = {a− (p + 1), a− (p + 2), . . . , a− (p + q)}.

In our terminology, the previous lemma states that a (p, q)-graph G is
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super (a, 0)-edge-antimagic total if and only if there exists an (a − p − q, 1)-
edge-antimagic vertex labeling.

Research Method

There are three step of studies. Each study uses a different method.

• Obtaining a network topology model. By web-searching technique,
we choose a Mountain Graph as well-defined family of graph.

• Determining an algorithm of SEATL. To find a SEATL bijective
function, we firstly utilize an EAVL strategy.

• Deriving a new Lemma, Theorem and Corollaries. Deductive
approach is the one of very popular way to prove mathematical truth.

Research Results

- The Mountain Graph

A connected Mountain Graph denoted by M2n is a graph with vertex set
|V | = {xi, yj ; 1 ≤ i ≤ 2n dan 1 ≤ j ≤ 6n + 2, nεN} and edge set, |E| =
{xiy3i−2, xiy3i+3 if i is odd, xiy3i−3, xiy3i+2 if i is even, xiy3i−1, xiy3i, xiy3i+1 if
i is any, 1 ≤ i ≤ 2n and yjyj+1, 1 ≤ j ≤ 6n+1}. Then |V (M2n)| = p = 8n+2
and |E(M2n)| = q = 16n + 1. If mountain graph, has a super (a, d)-edge-
antimagic total labeling then, for p = 8n + 2 and q = 16n + 1, it follows from
Lemma 1 that the upper bound of d is d ≤ 2 or d ∈ {0, 1, 2}.

The following new lemma describes an (a, 1)-edge-antimagic vertex labeling
for mountain graph.

Lemma 3 If n ≥ 1, then the mountain graph connected M2n has an (3, 1)-
edge-antimagic vertex labeling.

Proof. Define the vertex labeling α1 : V (M2n) → {1, 2, . . . , 8n + 2} in the
following way, for 1 ≤ i ≤ 2n and 1 ≤ j ≤ 6n + 2.

α1(xi) = 4i− ((−1)i+1+1)
2 ,
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α1(yj) =





4j−1
3 , for j = 1(mod 3),

4j−2
3 , for j = 2(mod 3),

4j+
8j((−1)j+1)

2
3 − 1− 7((−1)j+1)

2 , for j = 3(mod 3),

The vertex labeling α1 is a bijective function. The edge-weights of M2n,
under the labeling α1, constitute the following sets.

w1
α1

(xiy3i−2) = 8i− 4; for i is odd
w2

α1
(xiy3i−3) = 8i− 4; for i is even

w3
α1

(xiy3i−1) = 8i− 2− ((−1)i+1+1)
2 ; for i is any

w4
α1

(xiy3i) = 8i− 1; for i is any

w5
α1

(xiy3i+1) = 8i + ((−1)i+1)
2 ; for i is any

w6
α1

(xiy3i+2) = 8i + 2; for i is even
w7

α1
(xiy3i+3) = 8i + 2; for i is odd

w8
α1

(yjyj+1) = 8j+1
3 ; for j = 1(mod 3)

w9
α1

(yjyj+1) = 8j−1+
3((−1)j+1)

2
3 ; for j = 2(mod 3)

w10
α1

(yjyj+1) = 8j
3 + (−1)j+1+1

2 ; for j = 3(mod 3)

It is not difficult to see that the set
⋃10

t=1 wt
α1

= {3, 4, 5, . . . , 8j+1
3 } consists

of consecutive integers. Thus α1 is a (3, 1)-edge antimagic vertex labeling. 2

We utilize the vertex labeling α1 from the proof of Lemma 3 to prove the
following theorem.

Theorem 1 If n ≥ 1 then the graph M2n has a super (24n + 6, 0)-edge-
antimagic total labeling and a super (8n + 6, 2)-edge-antimagic total labeling.

Proof.
Case 1. d = 0
Label the vertices of M2n with α2(xi) = α1(xi) and α2(yj) = α1(yj), for 1 ≤
i ≤ 2n and 1 ≤ j ≤ 6n+2; and label the edges with α2(xi), α2(yj), α2(xiy3i−2),
α2(xiy3i−3), α2(xiy3i−1), α2(xiy3i), α2(xiy3i+1), α2(xiy3i+2), α2(xiy3i+3) and
α2(yjyj+1). It follows from Lemma 2 that the labeling α2 can be extended, by
completing the edge label p+1, p+2, . . . , p+q, to a super (a, 0)-edge antimagic
total labeling, where, in the case p = 8mn + 2m and q = 16mn + m.

We can find the total labeling Wα2 with summing wα1 = wα2 with edge
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label α2. It is not difficult to see that the set
⋃14

t=1 W t
α2

= {24n + 6, 24n + 6,
. . . , 24n + 6} contains an arithmetic sequence with the first term 24n + 6 and
common difference 0. Thus α2 is a super (24n + 6, 0)-edge-antimagic total
labeling. This concludes the proof. 2

Case 2. d = 2
Label the vertices of M2n with α3(xi) = α1(xi) and α3(yj) = α1(yj), for 1 ≤
i ≤ 2n and 1 ≤ j ≤ 6n+2; and label the edges with α3(xi), α3(yj), α3(xiy3i−2),
α3(xiy3i−3), α3(xiy3i−1), α3(xiy3i), α3(xiy3i+1), α3(xiy3i+2), α3(xiy3i+3) and
α3(yjyj+1). The total labeling α1 is a bijective function from V (M2n)

⋃
E(M2n)

onto the set {1, 2, 3, . . . , 24n+3}. For the edge weight of M2n, under the total
labeling α1 we have:

W 1
α3

= {w1
α3

+ α3(xiy3i−2); if i is odd}

= (8i− 4) + (8n + 8i− 4)

W 2
α3

= {w2
α3

+ α3(xiy3i−3); if i is even}

= (8i− 4) + (8n + 8i− 4)

W 3
α3

= {w3
α3

+ α3(xiy3i−1); if i is odd}

= (8i− 3) + (8n + 8i− 3)

W 4
α3

= {w4
α3

+ α3(xiy3i−1); if i is even}

= (8i− 2) + (8n + 8i− 2)

W 5
α3

= {w5
α3

+ α3(xiy3i); if i is any}

= (8i− 1) + (8n + 8i− 1)

W 6
α3

= {w6
α3

+ α3(xiy3i+1); if i is odd}

= (8i) + (8n + 8i)

W 7
α3

= {w7
α3

+ α3xiy3i+1); if i is even}

= (8i + 1) + (8n + 8i + 1)
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W 8
α3

= {w8
α3

+ α3(xiy3i+2); if i is even}
= (8i + 2) + (8n + 8i + 2)

W 9
α3

= {w9
α3

+ α3(xiy3i+3); if i is odd}

= (8i + 2) + (8n + 8i + 2)

W 10
α3

= {w10
α3

+ α3(yjyj+1); if j = 1(mod 3)}
= (

8j + 1
3

) + (8n +
8j + 1

3
)

W 11
α3

= {w11
α3

+ α3(yjyj+1); if j = 2(mod 3), j is odd}
= (

8j − 1
3

) + (8n +
8j − 1

3
)

W 12
α3

= {w12
α3

+ α3(yjyj+1); if j = 2(mod 3), j is even}
= (

8j + 2
3

) + (
8j + 2

3
)

W 13
α3

= {w13
α3

+ α3(yjyj+1); if j = 3(mod 3), j is odd}
= (

8j

3
+ 1) + (8n +

8j + 3
3

)

W 14
α3

= {w14
α3

+ α3(yjyj+1); if j = 3(mod 3), j is even}
= (

8j

3
) + (8n +

8j

3
)

It is not difficult to see that the set
⋃14

t=1 W t
α3

= {8n + 6, 8n + 8, 8n + 10
. . . , 40n + 6} contains an arithmetic sequence with the first term 8n + 6 and
common difference 0. Thus α3 is a super (8n + 6, 2)-edge-antimagic total
labeling. This concludes the proof. 2

Now, we will show our a progressive result for permutation lemma. This
lemma is very useful especially for finding a super (a, 1)-edge-antimagic total
labeling.

Lemma 4 Let Υ be a sequence of consecutive number Υ = {c, c+1, c+2, . . . c+
k}, k even. Then there exists a permutation Π(Υ) of the elements of Υ such
that Υ + Π(Υ) = {2c + k

2 + 1, 2c + k
2 + 2, 2c + k

2 + 3, . . . , 2c + 3k
2 , 2c + 3k

2 + 1}
is also a sequence of consecutive number.

Proof. Let Υ be a sequence Υ = {ai| ai = c + (i− 1), 1 ≤ i ≤ k + 1} and k

be even. Define a permutation Π(Υ) = {bi| 1 ≤ i ≤ k + 1} of the elements of
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Υ as follows:

bi =

{
c + k + 3−i

2 if i is odd, 1 ≤ i ≤ k + 1
c + k

2 + 2−i
2 if i is even, 2 ≤ i ≤ k.

By direct computation, we obtain that Υ + Π(Υ) = {ai + bi| 1 ≤ i ≤ k + 1} =
{2c + k + 1+i

2 | i odd, 1 ≤ i ≤ k + 1} ∪ {2c + k
2 + i

2 | i even, 2 ≤ i ≤ k} =
{2c + k

2 + 1, 2c + k
2 + 2, 2c + k

2 + 3, . . . , 2c + 3k
2 , 2c + 3k

2 + 1}. 2

Directly from Lemma 3, with respect to Lemma 4, it follows that mountain
graph has a super (a, 1)-edge-antimagic total labeling.

Theorem 2 If n ≥ 1, then the graph M2n has a super (16n + 6, 1)-edge-
antimagic total labeling.

Proof. From Lemma 3, the graph M2n has a (3, 1)-edge-antimagic vertex
labeling. Let A = {c, c + 1, c + 2, . . . , c + k} be a set of the edge weights of the
vertex labeling α3, for c = 3 and k = 16n. In light of Lemma 4, there exists
a permutation Π(Υ) of the elements of Υ such that Υ +

[
Π(Υ) + k

2 − 1
]

=
{2c + 16n, 2c + 16n + 1, . . . , 2c + 24n}. If

[
Π(Υ) + k

2 − 1
]

is an edge labeling
of M2n then Υ + [Π(Υ) + k

2 − 1] gives the set of the edge weights of M2n,
which implies that the total labeling is super (a, 1)-edge-antimagic total, where
a = 2c + 16n = 2(3) + 16n = 16n + 6. This concludes that the graph M2n

admid a super (16n + 6, 1)-edge antimagic totallabeling. 2

- Disjoint Union of Mountain Graph

Disjoint union of m copies of mountain graph denoted by mM2n is a discon-
nected graph with vertex set, |V | = {xk

i , y
k
j ; 1 ≤ i ≤ 2n and 1 ≤ j ≤ 6n+2, n ∈

N} and edge set, |E| = {xk
i y

k
3i−2, x

k
i y

k
3i+3 for i odd, xk

i y
k
3i−3, x

k
i y

k
3i+2 for i even,

xk
i y

k
3i−1, x

k
i y

k
3i, x

k
i y

k
3i+1 for any i, 1 ≤ i ≤ 2n and yk

j yk
j+1, 1 ≤ j ≤ 6n + 1}. We

bounded mM2n for 1 ≤ k ≤ m, m ≥ 2 and n ≥ 1. Thus |V (mM2n)| = p =
m(8n + 2) and |E(mM2n)| = q = m(16n + 1).

If the disjoint union of m copies of a Mountain Graph mM2n, has a super
(a, d)-edge-antimagic total labeling then, for p = m(8n+2) and q = m(16n+1),
it follows from Lemma 1 that the upper bound of d is d ≤ 2 − 3m−3

16mn+m−1 or
d ∈ {0, 1, 2}.
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Lemma 5 The graph mM2n for d = {0, 2} has a (3m+3
2 , 1)-edge-antimagic

vertex labeling if m ≥ 3 is odd and n ≥ 1.

Proof. Define the vertex labeling α4 : V (mM2n) → {1, 2, . . . , 8nm + 2m} in
the following way:

α4(yk
j ) =





(j−1)4m
3 + k+1+(

(−1)k+1
2

)m

2 ; for j ≡ 1(mod 9)

(j−2)4m
3 + 2m+k+(

(−1)k+1+1
2

)m

2 ; for j ≡ 2(mod 9)

(j−3)4m
3 + 6m+k+1+(

(−1)k+1
2

)m

2 ; for j ≡ 3(mod 9) , j is odd
(j−12)4m

3 + 15m− k + 1; for j ≡ 3(mod 9) , j is even

(j−4)4m
3 + 8m+k+(

(−1)k+1+1
2

)m

2 ; for j ≡ 4(mod 9)
(j−5)4m

3 + 6m− k + 1; for j ≡ 5(mod 9)

(j−6)4m
3 + 12m+k+1+(

(−1)k+1
2

)m

2 ; for j ≡ 6(mod 9) , j is even

(j−15)4m
3 + 38m+k+(

(−1)k+1+1
2

)m

2 ; for j ≡ 6(mod 9) , j is odd
(j−7)4m

3 + 9m− k + 1; for j ≡ 7(mod 9)

(j−8)4m
3 + 18m+k+1+(

(−1)k+1
2

)m

2 ; for j ≡ 8(mod 9)
(j−9)4m

3 + 12m− k + 1; for j ≡ 9(mod 9) , j is odd

(j−18)4m
3 + 44m+k+(

(−1)k+1+1
2

)m

2 ; for j ≡ 9(mod 9) , j is even

α4(xk
i ) =





(i− 1)4m + 3m− k + 1; for i ≡ 1(mod 6)

(i− 2)4m + 14m+k+(
(−1)k+1+1

2
)m

2 ; for i ≡ 2(mod 6)

(i− 3)4m + 20m+k+(
(−1)k+1+1

2
)m

2 ; for i ≡ 3(mod 6)

(i− 4)4m + 30m+k+1+(
(−1)k+1

2
)m

2 ; for i ≡ 4(mod 6)

(i− 5)4m + 36m+k+1+(
(−1)k+1

2
)m

2 ; for i ≡ 5(mod 6)
(i− 6)4m + 24m− k + 1; for i ≡ 6(mod 6)

for 1 ≤ i ≤ 2n and 1 ≤ j ≤ 6n + 2.
The vertex labeling α4 is a bijective function. We have the same way

with lemma 4 to determine the value of the edge-weights of mM2n. It is
not difficult to see that set

⋃45
t=1 wt

α4
= {3m+3

2 , 3m+5
2 , 3m+7

2 , . . . , (16n−3)m+1
2 }

consists of consecutive integers. Thus α4 is a (3m+3
2 , 1)-edge antimagic vertex
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labeling. 2

Baĉa, Lin, Miller and simanjutak (see[9],Theorem 5) have proved that if
(p, q)-graph G has an (a, d)-edge-antimagic vertex labeling then G has a super
(a + p + q, d− 1)-edge-antimagic total labeling and a super (a + p + 1, d + 1)-
edge-antimagic total labeling. With the Theorem 3.3.1 in hand, and using
Theorem 5 from [9], we obtain the following result(Dafik,2007:41).

Theorem 3 If m ≥ 3 is odd and n ≥ 1 then the graph mM2n has a super
(24mn+ (9m+3)

2 , 0)-edge-antimagic total labeling and a super (8mn+ 7m+5
2 , 2)-

edge-antimagic total labeling.

Proof.
Case 1. d = 0
Label the vertices of mM2n with α5(xk

i ) = α4(xk
i ) and α5(yk

j ) = α4(yk
j ), for

1 ≤ i ≤ 2n and 1 ≤ j ≤ 6n + 2; and label the edges with α5(yk
j yk

j+1),
α5(xk

i y
k
3i−2), α5(xk

i y
k
3i−1), α5(xk

i y
k
3i), α5(xk

i y
k
3i+1), α5(xk

i y
k
3i+3), α5(xk

i y
k
3i+2)

and α5(xk
i y

k
3i−3).

We can found the total labeling Wα5 with summing edge weight wα5 =
wα4 with edge label α5. It is not difficult to see that the set

⋃45
t=1 W t

α5
=

{24mn + (9m+3)
2 , 24mn + (9m+3)

2 , . . . , 24mn + (9m+3)
2 } contains an arithmetic

sequence with the first term {24mn + (9m+3)
2 and common difference 0. Thus

α2 is a super (24mn+ (9m+3)
2 , 0)-edge-antimagic total labeling. This concludes

the proof. 2

Case 2. d = 2
Label the vertices of mM2n with α6(xk

i ) = α4(xk
i ) and α6(yk

j ) = α4(yk
j ),

for 1 ≤ i ≤ 2n and 1 ≤ j ≤ 6n + 2; and label the edges with α6(yk
j yk

j+1),
α6(xk

i y
k
3i−2), α5(xk

i y
k
3i−1), α6(xk

i y
k
3i), α5(xk

i y
k
3i+1), α6(xk

i y
k
3i+3), α5(xk

i y
k
3i+2)

and α6(xk
i y

k
3i−3).

We can find the total labeling Wα6 with summing edge weight wα6 =
wα4 with edge label α6. It is not difficult to see that the set

⋃45
t=1 W t

α6
=

{7m+5
2 + 8mn, 7m+7

2 + 8mn, 7m+9
2 + 8mn . . . , 11m+1

2 + 40mn} contains an
arithmetic sequence with the first term 8mn + 7m+5

2 and common difference
2. Thus α6 is a super (8mn + 7m+5

2 , 2)-edge-antimagic total labeling. This
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concludes the proof. 2

Here, we will present our new permutation lemma. This lemma is also
very useful for proving a super (a, 1)-edge-antimagic total labeling.

Lemma 6 Let Ψ be a sequence of consecutive number Ψ = {c, c+1, c+2, . . . c+
k}, k even. Then there exists a permutation Π(Ψ) of the elements of Ψ such
that Ψ+Π(Ψ) = {2c+ k

2 , 2c+ k
2 +1, 2c+ k

2 +2, . . . , 2c+ 3k
2 } is also a sequence

of consecutive number.

Proof. Let Ψ be a sequence Ψ = {ai| ai = c + (i− 1), 1 ≤ i ≤ k + 1} and
k be even. Define a permutation Π(Ψ) = {bi| 1 ≤ i ≤ k + 1} of the elements
of Ψ as follows:

bi =

{
c + i + k

2 if 1 ≤ i ≤ k
2

c + i− (k
2 + 1) if k

2 + 1 ≤ i ≤ k + 1.

By direct computation, we obtain that Ψ + Π(Ψ) = {ai + bi| 1 ≤ i ≤ k + 1} =
{c + i + k

2 if 1 ≤ i ≤ k
2} ∪ {c + i− (k

2 + 1)if, k
2 + 1 ≤ i ≤ k + 1.} = {2c + k

2 , 2c +
k
2 + 1, 2c + k

2 + 2, 2c + k
2 + 3, . . . , 2c + 3k

2 , 2c + 3k
2 }. 2

Directly from Lemma 3, with respect to Lemma 6, it follows that mountain
graph has a super (a, 1)-edge-antimagic total labeling.

Theorem 4 If m ≥ 2 and n ≥ 1, then the graph mM2n has a super (16nm +
4m + 2, 1)-edge-antimagic total labeling.

Proof. From Lemma 5, the graph mM2n has a (3m+3
2 , 1)-edge-antimagic

vertex labeling. Let A = {c, c+1, c+2, . . . , c+k} be a set of the edge weights
of the vertex labeling α4, for c = 3m+3

2 and k = 16mn + m − 1. In light of
Lemma 6, there exists a permutation Π(Ψ) of the elements of Ψ such that Ψ+[
Π(Ψ) + k

2 − 1
]

= {2c+16mn+m−1, 2c+16mn+m, . . . , 2c+32mn+2m−2}.
If

[
Π(Υ) + k

2 − 1
]

is an edge labeling of mM2n then Υ + [Π(Υ) + k
2 − 1] gives

the set of the edge weights of mM2n, which implies that the total labeling is
super (a, 1)-edge-antimagic total, where a = 2c + 16mn + m− 1 = 2(3m+3

2 ) +
16mn+m− 1 = 16mn+4m+2. This concludes that the graph mM2n admid
a super (16mn + 4m + 2, 1)-edge antimagic totallabeling. 2
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Conclusion

We have proved that mountain graph M2n and disjoint union of moun-
tain graph mM2n admit super (a, d)-edge-antimagic for d ∈ {0, 1, 2} and for
specific m,n. Apart from those cases, we have not found any super (a, d)-edge-
antimagic total labeling. Therefore we propose the following open problems.

Open Problem 1 For the graph mM2n, n ≥ 1; 1 ≤ k ≤ m; m is even,
determine if there is a super (a, d)-edge-antimagic total labeling with d = 0
dan d = 2.
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