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ABSTRACT 
 

Many zero observations makes some difficulties and fatal consequence in Poisson 

modeling and its interpretation. We consider to facilitates the analysis of two-way tables 

of count with many zero observations in agricultural trial. For example, in counting the 

pest or disease in plants. Plants that have no sign of attack, can occur because of two 

things, it could be resistant, or simply there is no spore disease (no endemics) or no pest 

attack. This is the difference between inevitable structural zero or sampling zero that is 

occurring according to a random process. 
 

This paper describes a statistical framework and software for fitting row-column 

interaction models (RCIMs) to two-way table of count with some Zero observations. 

RCIMs apply some link function to the mean of a cell equaling a row effect plus a 

column effect plus an interaction term is modeled as a reduced-rank regression with rank 

of 2, then will be visualized by biplot. Therefore its potentially to be develop become 

AMMI models that accommodate ZIP count. 

 

KEYWORDS 
 

ZIP, AMMI Models, Row-Column Interaction Models, SVD Reparameteri-zation. 

 

1. INTRODUCTION 
 

The Poisson distribution is widely used in quality studies for count related data. 

Poisson regression models are basically modelling for counts. There are two strong 

assumptions for Poisson model to be checked: one is that events occur independently 

over of time or exposure period, the other is that the conditional mean and variance are 

equal. In practice, the Poisson with a large numbers of count, usually have greater 

variance than the mean are described as overdispersion. Poisson with smal value of mean, 

it also have small value of the variance, in this case, count data encounter with value of 

zero problems. This indicates that Poisson regression is not adequate. There are two 

common causes that can lead to overdispersion are additional variation to the mean or 

heterogeneity, an Negative Binomial model is often used and other cause counts with 

excess zeros or zero-infated. Poisson counts, since the excess zeros will give smaller 

conditional mean than the true value, this can be modeled by using zero-inflated Poisson 

(ZIP). 
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The proper model is needed to present a valid conclusion from the data count by the 

zero-inflation. Various applications related to this. For example, in calculating the pest or 

disease in plants. Plants that have no sign of attack, can occur because of two things, it 

could be as resistant to disease, or simply because there is no disease spores (no 

endemics) or no pest attack there. This is the difference between a structural zero, the 

inevitable, and zero sampling that is occurring according to a random process. 

 

2. ZERO-INFLATED AND ITS CONSEQUENCES 
 

Ignoring zero-inflation, especially when a sizeable proportion of the data is zero, 

implies that the underlying distributional assumptions will not be met. This will more 

than likely affect the results of an analysis, and hence lead to incorrect conclusions 

concerning the data. In addition to accounting for zero-inflation, we also need to consider 

the possibility of over-dispersion, which is variation larger than would be expected under 

the distributional assumptions. This is a commonly occurring phenomenon with Poisson 

models, and if ignored, can lead to underestimated standard errors and hence misleading 

inference about regression parameters (Hinde & Demetrio, [5]). Both zero-inflation and 

over-dispersion can occur simultaneously in a data set. 

 

3. HANDLING ZERO INFLATED ON AN ADDITIVE MODEL 
 

Suppose that yi is the number of occurrences of an attribute or event and xi ϵ R is a 

vector of covariates, both recorded for each of i = 1, . . . ,m sites. The simplest approach 

to modeling the relationship between yi and xi is an ordinary least squares fit of the 

transformed response, such as √yi or log(yi). However, such transformations are not 

helpful when the data contain many zeros because the zeros are unchanged under a 

square-root transformation and are undefined under a logarithmic transformation. 

Additionally, the underlying distributional assumptions of linearity, homoscedasticity and 

Gaussianity do not hold so this approach is not suitable in this context. 
 

A better approach is to fit a Poisson generalised linear model (GLM) with Log - link 

function. We can model over-dispersion by a proper variance function (McCullagh & 

Nelder [10]). However, the overall fit can be poor because there are typically many more 

zeros in the data than expected under a Poisson model which allows for over-dispersion.  
 

Another approach to modeling zero-inflated count data concerns the classification of 

the zero observations into two different groups. Distributions which classify their zero 

counts in this way have been referred to as zero-modified distributions, distributions with 

added zeros, zero-inflated distributions or mixture distributions. In these distributions, the 

zeros are classified into two groups: one group, which along with the positive counts are 

modeled by a discrete distribution such as the Poisson or negative binomial distribution, 

occur with probability 1 − ω; and the other group, which represent the „extra‟ zeros, 

occur with probability ω. Dietz & Bohning [3] discuss estimation of the parameter in 

zero-modified Poisson distributions and for illustration, they analyse counts recorded in a 

dental epidemiological study. Lambert [7], Welsh et al [15], and Bohning [1], also 

discuss applications of this approach to modeling zero-inflated count data. 
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4. INTRODUCING ROW-COLUMN INTERACTION  

MODEL FOR ZERO INFLATED 
 

Zero-inflated models often found in additive models, but less in the model of 

interaction. In the study of pest/diseases, analyses concern with the interaction between 

genotype and environmental influences (GEI). Crops that have no sign of attack, can 

occur because of two things, it could be resistant, or simply there is no spore disease (no 

endemics) or no pest attack. This is the difference between inevitable structural zero or 

sampling zero that is occurring according to a random process. 
 

 In this research area of the GEI, AMMI model said to be most powerful one to 

analyzed the GEI, by main effects plus multiplicative interaction terms. Nowadays, 

AMMI model has been developed to be more generalized, named GAMMI. It can handle 

Poisson count as well. AMMI model is basically presents interaction through dimension 

reduction techniques. Here, it is very important to introduce a statistical methodology 

handling problems with inflation-zero count. It will be possible to model the zero count 

as an expression of resistance and not because chance did not affected. 

 

 
Fig. 1. TheFramework 

 

 This section will discuss the framework (Figure 1) by something‟s related to the 

development of zero-inflated in the multiplicative model. Beginning with the concept of 

mixture distribution of zero-inflated Poisson, and the regression framework terampat by 

reduction of dimensions or Reduced Rank Vector Generalized Linear Models (RR-

VGLMs) which was introduced by Yee and Hastie [17]. Then the Row-Column 

Interaction Model (RCIM) Yee & Hadi [16]. 
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4.1 The Zero-Inflated Poisson Distribution 
A (discrete) random variable Yi is said to have a zero-inflated distribution if it has 

value 0 with probability ω, otherwise it has some other distribution with P(Y = 0) > 0. 

Hence P(Y = 0) comes from two sources, and the ω source can sometimes be thought of 

as a structural zero. The most famous of Zero-inflated distribution is the distribution of 

zero-inflated Poisson (ZIP) (Yee, [19]). 
 

Zero-infated poisson (ZIP) model, well described by Lambert [7] is a simple mixture 

model for count data with excess zeros. The model is a combination of a Poisson 

distribution and a degenerate distribution at zero. Specifically if Yi are independent 

random variables having a zero-infated Poisson distribution, the zeros are assumed to 

arise in to ways corresponding to distinct underlyingstates. The first state occurs with 

probability zero    and produces only zeros, whilethe other state occurs with probability 

     and leads to a standard Poisson countwith mean λ and hence a chance of further 

zeros. In general, the zeros from the first state are called structural zeros and those from 

the Poisson distribution are called sampling zeros (Jansakul and Hinde, [12]). This two-

state process gives a simple two-component mixture distribution with p.m.f 
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conditional   shows a phenomenon of over-dispersion, if       It is clear that this 

reduces to the standard Poisson model when     . For a random sample of 

observations             ; the log-likelihood function is given by 
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where I(.) is the indicator function for the specified event, i.e. equal to 1 if the event is 

true and 0 otherwise. To apply the zero-infated Poisson model in practicalmodelling 

situations, Lambert [7] suggested the following joint models for 

          as follows: 
 

    (
 

   
)   𝜸       ( )     

 

4.2 Reduce – Rank Vector Generalized Linear Models 

 Suppose our data comprises(     ) for         where    denotes the vector of 

explanatory variables for the ith observation, and    is the response (possibly a vector). 

The first value of    is unity for an intercept term.VGLMs are similar to ordinary GLMs 

but allow for multiple linear predictors. VGLMSs handle M linear predictors (the 

dimension M depends on the model to be fitted) where the jth one is 
 

       ( )    
     ( )    

 
                     (4) 

 

 The j of VGLMs may be applied directly to parameters of a distribution, j, rather 

than just to mean  = E(Y) as for GLMSs, in general, )( jjj g   for some parameter 

link function jg
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where B is a p × M matrix of (sometimes too many) regression coefficients. In many 

situations the regressions coefficients are related to each other. For example, some of the 
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may be equal, set to zero, or add up to a certain quantity. These situations may be 

dealt with by use of constraint matrices. VGLMs in general have  
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where H1, H2 ,…, Hp are known full-column rank constraint matrices and )(
*

k are 

vectors of unknown coefficients. With no one constraint at all H1 = H2 = … =Hp = IM. 

then, for VGLMs,  
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 Partition x into  TTT xx 21 , (of dimension ppp  21 ) and B =  TTT
21 , BB if 2B has 

too many regression coefficients then we can reduce its number dramatically by a 

reduced-rank regression. RRVGLMs then have:  
 

  2211 xx TT
BB                   (8) 

 

where we approximate 2B  by a reduced-rank regression 
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  .  2
T

ACB                     (9) 
 

 Here, C  and A  are Rp 2 and RM   respectively, and they are „thin‟ because the 

rank R is low, e.g., R = 1 or 2. Thus 
 

  vxT
AB  11                      (10) 

where 2xv T
C  is a vector of R latent variables. 

 

 To make the parameters unique, it is common to enforce corner constraint on A . By 

default, the top RR submatrix is fixed to be RI  and the remainder of A  is estimated. 
 

4.3 Row-Column Interaction Model for Data count in the RR-VGLM 
 We use Goodman‟s RC association model (Goodman, [3]) to explain what a RCIM is. 

For more background see Yee and Hastie [17]. How does Goodman‟s RC association 

model fit within the VGLMs framework? Suppose Y = [(yij)] be a n × M matrix of 

counts. Goodman‟s model fits a reduced-rank type model to Y by firstly assuming that 

Yij has a Poisson distribution, and that 
 

         (   )                 
 
                 (11)  

 

where      (   ) is the mean of the i-j cell. Identifiability constraint are needed in  

(11) for the row and column effects         ; we use corner constraints         in 

this article. The parameters             also need constraints, e.g., we use Rk ,,1  for 

         . We can write (11) as    (   )             . Where the       

matrix    (   )  of interaction terms is approximated by the reduced ran quantit y 

       
 
   . Goodman‟s RCassociation model fits within the VGLMs framework by 

letting         . Where     (  ) is the mean of ith row of Y. Then the matrix 

(        ) fits into RR-VGLM framework as follows. From last section, we obtain  
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when a subscript “(-1)” means the first element or row is removed from the vector or 

matrix. This shows, for example,that the intercept and row score variables have 1M as 

their constraint matrices. Similiarly, because B2 is approximated by    , the i-th row of 

  will be approximated by   𝒊
    , or equivalently,   is approximated by 
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 That is, the first row of matrix of A consist of structural zeros which are „omitted‟ 

from the reduced rank regression of  .  
 

 One could define RCIMs as a RR-VGLM with  
 

  𝜼𝟏𝒊𝒋  𝝁  𝜶𝒊  𝜸𝒋   𝒂𝒊𝒌𝒄𝒋𝒌
𝑹
𝒌 𝟏                 (12) 

 

 Note that (12) applies to the first linear/additive predictor; for models with M >1 one 

can leave          unchanged. Of course, choosing   for (12) is only for convenience. 

The software chooses   
  ( ̂  ) as the fitted values of the model and the result should be 

the same dimensions as the two-way table. 
 

4.4 Zero-inflated Poisson model in the RR-VGLM  
 ZIP model is very powerful in dealing with count data with excess zeros than the 
usual Poisson distribution, partly it is because the ZIP model also handles over-dispers. 
Distribution as ZIP equation (1) can be mentioned that the event (Y = 0) come from two 

sources and in this model it with the RR-VGLM    and    as  
 

    (
  

  
)  (

      
    

)                   (13) 

 

 There are two processes of how the data occurs, the first data is zero and the Poisson 

count data. Both processes are modeled respectively by    and   . 
 

 Liu and Chan [8] gives examples of research involving surveys in which the spatio-
temporal aggregation of fish catches show a positive opportunity similar to a monotonic 
function of the middle value. 

 

 Liu and Chan [8] proposed several new methodologies that allow ZIP to handle the 
linkage between the two processes. They call it COZIGAM, which is constrained zero-
inflated generalized additive models. Which in the fact now, can be seen simply that this 
is a dimension reduction regression models ZIP or reduced-rank zero-inflated Poisson 
model (RR-ZIP). RR-ZIP is given by 

 

             ( )                          (14) 
 

           
                       (15) 

 

with β(1)1 and a(1)1 is coeficient who want predictable. 
 

 Actually, because ηj here is the linear predictor as in equation (4), then equation (14) 
and (15) should be called COZIGLM. Connectedness can be seen, for example, if μ 
increases, η2 increases, and then η1 and increasing ψ if a(1)1appreciating positive. 

 

 Equation (14) and (15) is a model RR-ZIP was rank 1 with H1 = I2 and H2 = … = Hp = 
(a(1)1)

T
. There is a trivial complication that the constraint angle (can use other constraints) 

imposed on parameters that are used instead of the first two. This can be simplified if the 
order parameter exchanged. 

 

4.5 SVD-Reparameterization for the GAMMI Model 
 An overlapping methodology is the generalized additive main effects and 
multiplicative interaction models, or GAMMI models, of Turner and Firth [13]. These 
also comprise the row and column main effects plus one or more components of the 
multiplicative interaction. The singular value corresponding to each multiplicative 
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component is often factored out, as a measure of the strength of interaction between the 
row and column scores, indicating the importance of the component, or axis. For cell 

means    a GAMMI-R model has the form 
 

   (   )           
 
         .                 (13) 

 

 Based on (13) GAMMI models appear to be identical to RCIMs. Here they apply a 
SVD to our AC

T
. While our interaction term uses corner constraints, their SVD 

parameterization is quite interpretable and is related to some of the other 
parameterizations described in Yee and Hastie [17]. The advantage of RCIMs is that it 
should work for any VGAM family function, thus the family size is much bigger. It is 
easy to perform some post-transformations such as applying svd() to the VGAM output 
to obtain the SVD parameterization for GAMMI models.  

 

5. APPLICATION: LEAF RUST DISEASE ATTACKS ON MUNG BEAN  
 

 The data comes from the Indonesian Legumes and Tuber Crops Research Institute 
(ILETR) Malang. This trial involved 10 genotypes and two green beans varieties which 
planted in 5 different environments at Probolinggo, Jombang, Jember, Rasanae, and Bolo. 
Experiments conducted on plots of size 4x 5m

2 
with a spacing of 40 cmx 10cm, two seeds 

per hole. The design in each environment is completely randomized, with 3 replications. 
One of the researchers' attention is on resistance to leaf rust disease. This disease is a not 
major disease. Observations done on trials field without inoculated. Theatrically it allows 
to be happened what is called by the term "escape", event with no attack. Statistically it is 
such of the zero-inflated phenomenon. Table 1 shows the amount average from three 
replications. 

 

Table 1: 

Count of Leaf Rust Disease Attacks on Mung Bean 

Genotype 
Locations (Environments) 

Proboliggo Jember Jombang Bolo Rasanae 

MLG 1002 0 167 100 150 150 

MLG 1004 0 217 250 233 250 

MLG 1021 0 200 217 183 217 

MMC 74d Kp1 0 133 200 183 133 

MMC 71d Kp2 0 200 200 233 367 

MMC 157d Kp1 0 133 150 167 150 

MMC 203d Kp5 0 50 100 67 83 

MMC 205e 0 50 67 100 67 

MMC 100f Kp1 0 50 83 83 83 

MMC 87d Kp5 0 83 117 133 83 

MURAI 0 0 50 33 33 

PER KUTUT 0 67 133 117 117 
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 Data were analyzed using the VGAM package with SVD reparameterization in the 
RCIM model follows what is done by Turner & Fifth[13] on the Poisson distribution with 
the GAMMI model proposed by VanEeuwijk [14].  

 

 Zero inflated Poisson (ZIP) model give us two results, the logit and the log-part. The 

logit-pat give us the probability of being zero at random, from a intercept only model. 

The log-part is our main attentions since it give us more information. The model used is 

the RCIM model with rank = 0 and SVD-reparaterization on working residuals to get the 

interaction with rank =2. The data were number of crops attacked by leaf-rust, so that 

genotype with large numbers indicate that it is vulnerable. Genotype with average count 

in almost allocations, said to be stable (in fact, it is vulnerable) and will be located close 

to the origin point on biplot. That is, the zero origin biplot point does not always describe 

the resistance of the genotype. Probolinggo are drawn close to the zero point, because of 

in general, the overall genotypes have the same number of zeros. However, the zeros on 

the observation in Probolinggo sometimes called "escape" observation, where all the 

columns on this row is zero. The ZIP model relies on the assumption that “zero” are as 

structural zero and random zero. As random zero, ZIP model will provide us the 

probability of cell to be zero, and the fitted value for Poisson count, as well. 

 

Table 1 

The Log-Likelihood Ratio Test 

Model DF Log-Likelihood G DF-Chisq p-value 
 

FullModel (Rank=4) 58 -150.2266 
    

GAMMI Rank=3 50 -150.2266 0 8 1.00E+00 ok 

GAMMI Rank=2 40 -160.1218 19.7904 18 3.45E-01 ok 

GAMMI Rank=1 28 -182.6969 64.9406 30 2.23E-04 bad 

Main Effects(Rank=0) 14 -249.6574 198.8616 44 1.44E-21 bad 
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Figure 2: Biplot of the Interaction Effect on Log-Scale of Zero-Inflated Poisson  

 

 Determining the Rank 2 model, we test the existence the interaction term using 

Likelihood Ratio (LR) between the null model with the saturated model. In this case the 

LR value between Rank = 2 and Rank = 1 is equal to 19.7904 with a p-value of on Chi-

square distribution (degrees of freedom = 18) which very small that is equal to 3.45e-01. 

With the ZIP model Rank = 2 of GAMMI-ZIP model, the biplot of it is presented in 

Figure 2. The variability shown by the eigen value of matrix interaction, the five root 

traits in a row are: 1.056, 0.807, 0.696, 0.000, 0.000. The first two eigen, explaining the 

total variability Biplot, hat is 72.78%. 
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